
A Real-Time Visual Attention Model for Predicting Gaze Point
During First-Person Exploration of Virtual Environments

Sebastien Hillaire∗

Orange Labs / INRIA
Anatole Lecuyer†

INRIA
Tony Regia-Corte‡

INRIA
Remi Cozot§

INRIA / Univ. of Rennes 1
Gaspard Breton¶

Orange Labs

Abstract

This paper introduces a novel visual attention model to compute
user’s gaze position automatically, i.e. without using a gaze-
tracking system. Our model is specifically designed for real-time
first-person exploration of 3D virtual environments. It is the first
model adapted to this context which can compute, in real-time, a
continuous gaze point position instead of a set of 3D objects po-
tentially observed by the user. To do so, contrary to previous mod-
els which use a mesh-based representation of visual objects, we
introduce a representation based on surface-elements. Our model
also simulates visual reflexes and the cognitive process which takes
place in the brain such as the gaze behavior associated to first-
person navigation in the virtual environment. Our visual atten-
tion model combines the bottom-up and top-down components to
compute a continuous gaze point position on screen that hopefully
matches the user’s one. We have conducted an experiment to study
and compare the performance of our method with a state-of-the-art
approach. Our results are found significantly better with more than
100% of accuracy gained. This suggests that computing in real-
time a gaze point in a 3D virtual environment is possible and is a
valid approach as compared to object-based approaches.

CR Categories: I.2.0 [Artificial Intelligence]: User/Machine
Systems—human factors; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Virtual Reality; H.5.2 [In-
formation Interfaces and Presentation]: User Interfaces—Input de-
vices and strategies, Interaction styles, User-centred design

Keywords: visual attention model, first person exploration, gaze
tracking

1 Introduction

The gaze point is the point a user is looking at. In Virtual Envi-
ronments (VE), knowing the gaze point position can give devel-
opers several advantages to efficiently display a high quality vir-
tual scene. Applications can take advantage of this feature to better
distribute available computational resources to efficiently render a
virtual scene or to simulate natural effects occurring in human vi-
sion improving users’ perception of the VE. For instance, Luebke
et al. [Luebke and Hallen 2001] proposed a method to accelerate
the rendering process of a VE by progressively decimating meshes
based on their distance to the gaze point. Hillaire et al. [Hillaire

∗e-mail: shillair@irisa.fr
†e-mail:anatole.lecuyer@irisa.fr
‡e-mail:tregiaco@irisa.fr
§e-mail:remi.cozot@irisa.fr
¶e-mail:gaspard.breton@orange-ftgroup.com

et al. 2008a] proposed two visual effects to increase users’ immer-
sion and perception in VE based on the gaze point: a depth-of-field
blur effect and a compensated camera motion both adapted to user’s
gaze point in real-time.

A straightforward way to compute user’s gaze point position on
a screen is to use a gaze tracking system [Glenstrup and Engell-
Nielsen 1995]. Since their creation in the late 19th century, before
the computer existed, these systems have been considerably en-
hanced [Glenstrup and Engell-Nielsen 1995]. The interest in these
systems has grown thanks to their usefulness in several domains:
human studies in psychology to VR systems, aid for people with
disabilities or graphic rendering. However, accurate gaze tracking
systems are still expensive and can only be accessed by a limited
number of researchers or companies.

Another way to compute the gaze point is to use a visual atten-
tion model simulating human attention. Many researches have been
dedicated to the evaluation of human attention when looking at pic-
tures [Itti et al. 1998] or video [Itti 2005] and its simulation using
visual attention models. However, these models have not yet been
studied nor adapted to the context of first person exploration of VE.
To the best of our knowledge, only the model proposed by Lee et
al. [Lee et al. 2009] is adapted to this context but it can only com-
pute attention per objects.

In this paper, we propose a novel visual attention model adapted to
the context of real-time first-person exploration of VE. It is com-
posed of new, and improved, components and data representations.
Our main contributions are:

• A novel visual attention model specifically designed for real-
time exploration of 3D VE which can compute a continuous
2D gaze point position;

• A novel representation of visual objects based on surface-
elements (surfels). We will show that this representation has
several advantages over the mesh-based representation for vi-
sual attention models;

• The use of a novel component simulating the gaze behavior of
users walking and turning in VE [Hillaire et al. 2009], imple-
mented for the first time in a real-time visual attention model.

• An extended evaluation of our model as compared to a state-
of-the-art approach in various 3D VE.

In the remainder of this paper, we will describe related work con-
cerning human visual attention and visual attention models. Then,
we will detail the novel visual attention model we propose. Finally,
we will report on an experiment conducted to evaluate the efficiency
of our model as compared to a state-of-the-art model. Last, we will
discuss efficiency and usability of the proposed model in VR appli-
cations.

2 Related Work

Visual attention represents the capacity of a human to focus on
a visual object. It is well known that human visual attention is
composed of two components [Itti 2005]: bottom-up and top-down
components.

The bottom-up component represents the visual reflexes of the hu-
man visual system. Due to the structure of our brain and the fact
that we only accurately perceive the environment within 2 degrees
of the visual field [Cater et al. 2003], the human visual system does
not have the capabilities to analyze a whole scene in parallel. Ac-
tually, the human visual system can only detect primitive features
in parallel, defining salient areas in the visual field. Then, it uses a
sequential visual search to quickly analyze the scene [Treisman and
Gelade 1980]. For example, when someone first looks at a scene,
his/her gaze is first unconsciously attracted by visually salient ar-
eas to rapidly perceive the most important parts of the scene [Itti
et al. 1998]. Several visually salient features have been identified in
previous researches [Treisman and Gelade 1980][Itti et al. 1998]:
red/green and blue/yellow antagonistic colors, intensities, orienta-
tions, etc. Inspired by the feature integration theory [Treisman and
Gelade 1980], bottom-up visual attention models have been devel-
oped to compute a saliency map from an image [Itti et al. 1998].
The saliency value of each pixel of the saliency map represents its
attractiveness, i.e. the higher saliency of an area, the more a human
is likely to look at this area. Other features have been progressively
added in the computation of saliency maps such as flickering [Itti
2005], depth [Lee et al. 2009] or motion [Itti 2005].

Moreover, visual attention is not only controlled by reflexes result-
ing from visual stimuli, but also by the cognitive process that takes
place in the brain, i.e. the top-down component. It is involved in the
strategies we use to analyze a scene. For example, Yarbus [Yarbus
1967] has shown that the way people look at pictures strongly de-
pends on the task they have to achieve. Furthermore, the top-down
component is subject to the habituation phenomenon [Longhurst
et al. 2006], i.e. objects become familiar over time, and we become
oblivious to them. Several models have been proposed to simu-
late the multiple top-down components using task-map [Cater et al.
2003], habituation [Longhurst et al. 2006], memory [Navalpakkam
and Itti 2005] as well as spatio-temporal contexts [Lee et al. 2009].

Bottom-up only models[Itti et al. 1998][Itti 2005] have been re-
ported as good predictors as they were able to predict a non-
negligible fraction of human gaze targets, i.e. there is a strong
correlation between gaze positions and salient areas in a saliency
map. However, in a game scenario, Sundstedt et al. [Sundstedt
et al. 2008] have shown that a saliency map alone is not sufficient
to efficiently compute user’s gaze. Even without an explicit task,
users will automatically assume a task by themselves. As suggested
by [Itti 2005], it seems that a saliency map only suggests a set of
potential gaze locations, and that another higher level component,
i.e. top-down, may choose a gaze position in this set. As a result,
it seems necessary for a visual attention model to simulate both
bottom-up and top-down components [Sundstedt et al. 2008].

Sears et al. [Sears and Pylyshyn 2000] suggested that human vi-
sual attention could be based on objects in their Multiple Object
Tracking (MOT) theory. Following this theory, each object has an
attention priority value that is assigned in a stimulus-driven manner.
A set of 3 to 5 objects are then indexed based on this value. This
set of indexed objects can then be attended rapidly and before other
objects in the visual field.

Surprisingly, few researches have been dedicated to the use of vi-
sual attention models for real-time attention or gaze prediction dur-
ing exploration of 3D VE. To our best knowledge, only the vi-
sual attention model based on the MOT theory proposed by Lee et
al. [Lee et al. 2009] has been specifically designed for this aim. As
described in the MOT theory, it does not compute a gaze point posi-
tion on the screen but returns the object, or set of objects, that could
potentially receive more attention from the user. It is able to predict
the object gazed by the user 48% of the time during free navigation
and 62% of the time during a research task involving navigation

Raw Data

Gaze point computation

Top-DownBottom-Up

DepthColor Motion 3D Scene

Fl Fa Fb Fd Fm

Cl Ca Cb Cd Cm

Saliency map

ScrC CamRot

Surfel
map

Hab SC

High level attention

Final attention
map (Attf)

Gaze pattern
simulator

Update

Render

Task

(A)

(B)

(C)

(D)

(E)

(F)

(G)

RGB to Lab

Gaze position
selection

2D gaze

point

Σ Σ

π

Camera
& motion

(H)

Surfel part Cam part

Figure 1: Overview of our visual attention model architecture.
A) feature maps, B) conspicuity maps, C) bottom-up attention
(saliency map), D) update of per-surfel data, E) top-down atten-
tion, F) computation of final attention on screen, G) computation of
the possible next gaze position and H) the gaze pattern simulator
computing the final gaze position on screen. Red color emphasizes
the novel parts of our visual attention model compared to existing
techniques.

in static and dynamic VE. However, this mesh-based discretization
might be considered as a limitation as it is not possible to know
precisely where the user is looking at on a particular object, e.g. is
he looking at the corner or middle of a wall? This can be viewed
as a coarse approximation, especially for large objects, and it is
important to compute a 2D point when applying gaze-based meth-
ods such as proposed in [Luebke and Hallen 2001][Hillaire et al.
2008a]. As future work, Lee et al. [Lee et al. 2009] suggested to
take into account the novelty of objects and other adapted top-down
components. To this aim, Hillaire et al. [Hillaire et al. 2009] have
studied user’s gaze behavior when walking and turning in VE. They
have proposed a new model taking into account first-person naviga-
tion in order to compute an attentional weight on the whole screen
based on the current rotation velocity of the camera.

3 A novel visual attention model for real-time
exploration of virtual environments

This section describes the complete computational visual attention
model we propose. This model is able to estimate in real-time a
gaze position that hopefully matches user’s gaze without the need
of physical devices such as web-cam or expensive gaze tracker. In
the following subsections, we will describe the computation of both
the bottom-up then top-down component. Finally, we will present
our method to combine these two components in order to estimate
a continuous 2D gaze position on the screen.

3.1 Computation of the bottom-up component

The bottom-up component of our model computes a pixel-level
saliency map using several visual features: intensity [Itti et al.
1998], antagonistic colors [Itti et al. 1998], depth [Longhurst et al.
2006] and motion [Itti 2005].

3.1.1 Computation of feature maps

The starting point to compute a saliency map is to compute a feature
map for each visual features (Figure 1-A):

- Antagonistic colors and luminosity: Originally, Itti et al. [Itti

et al. 1998] used red/green and blue/yellow antagonistic colors as
well as intensities. In their model, antagonistic colors were com-
puted using simple operation on RGB components. In our case,
we propose to use the perceptual Lab color space which takes
into account human perception [Robertson 1990]. Moreover, this
color space has the advantage of directly encoding red/green and
blue/yellow antagonistic colors as well as intensity, respectively the
a, b and L components. They correspond to Fa, Fb and Fl feature
maps in Figure 1.

- Depth: We propose to use a depth map as proposed in [Longhurst
et al. 2006][Lee et al. 2009]. The value Fd(p) for each pixel p of
the depth feature map Fd is computed using Equation 1 with z(p)
being the linear depth of pixel p, znear and zfar the distances of
the near and far clip planes.

Fd(p) =
z(p)− znear
zfar − znear

(1)

- Motion: Our model also takes into account visible motion on
the screen. Lee et al. [Lee et al. 2009] proposed to approximate
this feature using the motion of a single point of each visual object
in world space. However this method does not take into account
animated objects, e.g. an avatar moving only the hand. The motion
feature Fm(p) of each pixel p of the motion feature map Fm is
computed using Equation 2 with v(p) being the world space motion
projected on the screen and t the time elapsed since last frame.

Fm(p) =
‖v(p)‖

t
(2)

3.1.2 Computation of conspicuity maps

Before computing the saliency map, the feature maps need to
be converted into conspicuity maps using the multi-scale Center-
Surround difference operator [Itti et al. 1998] simulating the re-
sponse of brain neurons which receive stimuli from the visual re-
ceptive fields. Instead of a dyadic Gaussian feature map pyra-
mid, we use an approximation consisting of using the fast hardware
mipmap pyramid generation of Graphics Processing Units (GPU)
(see [Lee et al. 2009]). The conspicuity maps, i.e. Cl , Ca, Cb, Cd
and Cm in Figure 1-B, are computed using Equation 3 with i and
i + j being mipmap pyramid levels. The level i is a fine level and
i + j a coarser level of the pyramid.

∀x ∈ {l, a, b, d, m} , Cx=
1
6

∑2

i=0

∑4

j=3

∣∣F i
x − F i+j

x

∣∣ (3)

Finally, the conspicuity maps are normalized using the N operator
as described by Itti et al. [Itti et al. 1998] where we replace the mean
of local maxima by the mean of all values in the conspicuity map
for the sake of performance.

3.1.3 Computation of the final saliency map

The final saliency map can be generated using the conspicuity maps
computed in the previous step (Figure 1-C). It is the result of a linear
combination of each conspicuity map using Equation 4. Finally, the
saliency map S is normalized in order to have its values mapped
into the range [0, 1].

S =
1

5
×

∑
x∈{l,a,b,d,m}

Cx (4)

3.2 Computation of the top-down component

The top-down component of our model consists in simulating the
cognitive processes that take place in the brain. We first propose a
novel representation of visual objects based on surfel (instead of a
coarse mesh-based representation) to compute spatial context [Lee
et al. 2009] and habituation [Longhurst et al. 2006] components.
Our model relies also on screen-space weights to take into account
the observed gaze behavior of human navigating in VE using a first-
person view.

3.2.1 Surfel-based representation of visual objects

Previous models for 3D exploration of VE use a representation of
visual objects based on meshes [Lee et al. 2009]. This can be seen
as a limitation as it is not possible to differentiate sub-parts of an
object. Using this representation, it becomes indeed impossible to
know if the user is gazing at the head or leg of an avatar. Moreover,
large walls are problematic. Indeed, the wall can be identified as an
attended object but it is not possible to differentiate between cases
when the user looks at the middle or at a corner of the wall.

A possible solution could be to cut large objects in several parts.
However, it is not always possible to easily modify existing assets
(3D models). Also, for the sake of performance, subdividing a mesh
in several sub-meshes is risky, i.e. too many triangles might impair
rendering performance. Furthermore, a visual object could be em-
bedded in the object texture, e.g. bullet holes on a wall.

In this paper, we propose to solve this issue by using a discretization
of polygonal surfaces into smaller elements having the same world
space size: surface elements also known as surfel. Surfel are well-
kown and they are used as a lightmap encoding the irradiance per
surface elements [Chen and Liu 2008]. Our visual attention model
requires a surfel map to be built for each mesh of every potentially
visible object in the VE. In our model, a surfel map virtually subdi-
vides a mesh into several pieces (surfels) and stores them in a tex-
ture, thus not involving geometry subdivisions. A surfel is defined
by its previous and current positions in world space. Concerning
static meshes, the surfel map only contains the current position as
visible in Figure 2. Also, for the sake of performance, the surfel
map of dynamic objects is updated only when they move.

3.2.2 Generating the surfel maps

To generate the surfel map, which is in fact a texture, we first need
texture coordinates for each mesh triangle that will map each trian-
gle to its corresponding 2D position in the texture. This corresponds
to unfolding triangles of the 3D meshes in the 2D map. These tex-
ture coordinates must respect two constraints: (1) overlapping trian-
gles are forbidden and (2) a triangle must at least contain the center
of a texture element (texel) of the surfel map to result in a surfel data
that can be used later. 3D modeling softwares such as Maya or 3D
Studio Max already propose such a feature. This process is already
used in several applications for the purpose of light-mapping [Chen
and Liu 2008].

To fill the surfel map with data, we simply render the 3D meshes.
But instead of applying a 3D projection, we project the meshes’ tri-
angles in 2D using the texture coordinates as positions. For each
texel, the final 3D coordinates in world space are written in the sur-
fel map according to each model transformation matrix (Figure 1-
D). Using a surfel map avoids our model being too dependent of
the geometry complexity of the scene. It just requires to update the
surfel map of dynamic objects when they move. Then, all per-surfel
computations are done in the surfel map, i.e. texture space. This al-
lows to take advantage of the computational power of graphic hard-
ware by processing all surfels in parallel.

Update of visibility and habituation maps

Computation of the surfel map
Surfel map of the sceneScene view and camera frustum

Compute visibility

B) C) D)

B’) C’) D’)

Update habituation After 6 seconds

A)

Update

(unfold

scene)

Figure 2: Computation of the surfel map, and update of visibility
and habituation maps. A) the surfel map containing world space
surfel position (XYZ into RGB) B) surfel visibility (red=visible), C)
surfel habituation (the greener the surfel, the less habituated the
viewer is to it) and D) surfel habituation after waiting 6 seconds.
B’, C’ and D’ are views of the surfel map texture mapped on the
scene.

After preliminary testing, we have set the world space size of sur-
fel to 20cm. Objects smaller than 20cm are virtually scaled-up.
In these cases, we have visually adjusted the scale factor to have
each object surfaces represented by at least one surfel. Each VE
presented in Section 4 fit in a single 256× 256 surfel map.

3.2.3 Computation of per-surfel components

Our visual attention model computes two attentional components
per surfel (or visual object) which are habituation and spatial con-
text:

- Habituation: The habituation component refers to the fact that
visual objects become familiar over time [Longhurst et al. 2006].
For each surfel, we compute the habituation value for current frame
using Equation 5 where t is the elapsed time in milliseconds.

Hab(s) =

{
Habprev(s) ∗ exp(− t

h−) if vis(s)==true
Habprev(s) + h+ × t otherwise

(5)

When a surfel s is visible, the habituation is attenuated using an
exponential decay [Longhurst et al. 2006] with interest for s going
under 0.1 in 7s (h− = 3000) (see [Longhurst et al. 2006] for de-
tails). When s is not visible, it is linearly regaining full interest in
20s (h+ = 20000). The visibility vis(s) of a surfel s is determined
using shadow mapping (Figure 2-A) based on the depth buffer of
the rendered view of the scene. Thanks to the surfel-based rep-
resentation of visual objects, the visual attention model habituates
itself to visible parts of a wall but not to the parts that are hidden by
other objects (Figure 2-B).

- Spatial context: Lee et al. [Lee et al. 2009] have proposed a spa-
tial context component to take into account the spatial behavior of
the user. This component modulates the importance of each visual
object based on its distance to the user. Visual objects (surfels in our

case) too close or too far from the distance of interest become pro-
gressively less important. We use the same equation as proposed by
Lee et al. [Lee et al. 2009] except that we have removed the condi-
tion on the fact that objects must move toward the camera. This was
made in order to avoid discontinuities in the spatial context value
(Equation 6-SCd(s)). Since users tend to get close to objects they
want to inspect [Lee et al. 2009], our spatial component also gives
more importance to surfels moving toward the camera (Equation 6-
SC∆d(s)). For each surfel s, the final spatial context value SC(s)
is computed using Equation 6:

SC(s) =SCd(s) ∗ SC∆d(s)

SCd(s) = d(s)
C1
× exp

−
(

d(s)
C1

)2
SC∆d(s)=min(C2 ×max(δd(s)

δt
, 0.0), 1.0)

(6)

Where C1 = D/0.707 and D is the distance when surfel are con-
sidered as more important (see [Lee et al. 2009]). The other param-
eters are t the elapsed time since the last frame in seconds, d(s) the
distance of the surfel s to the camera and C2 is a scaling constant.
Afer preliminary testing, we chose C2 = 0.87 (it means that an
object moving toward the camera with speed equals to the walking
speed of user’s avatar will have the highest importance value).

3.2.4 Computation of statistical screen-space components

The gaze behavior of users exploring VE has been studied
in [Hillaire et al. 2009][Hillaire et al. 2008b]. The top-down com-
ponent of our visual attention model takes into account the observed
gaze behavior resulting from the fact that users are navigating in the
VE using a first-person view.

- Global screen-space gaze density: It has been shown that dur-
ing a first-person view game, users tend to look more at the center
of the screen [Hillaire et al. 2008b]. We propose to model this be-
havior as in [Lee et al. 2009] using a constant weight ScrC(p) =

exp−Dist2Center(p) applied on the screen where Dist2Center(p)
is a function giving the distance of pixel p to the center of the screen
(Figure 1-E). Screen coordinates are in the range [0, 1] and the mid-
dle of the screen is (0.5, 0.5).

- Gaze behavior during camera rotations: In our model, we intro-
duce for the first time the real-time attentional component recently
proposed in [Hillaire et al. 2009]. In this paper, authors have stud-
ied user’s gaze behavior when turning in VE. They have proposed a
new function to compute an attentional weight on the whole screen
based on the current rotation velocity of the camera. For instance,
for a yaw rotation of the camera to the left, a high attention weight
is set to pixels on the left of the screen. Our model introduces this
function to compute an attention value CamRot(p) for each pixel
p on the screen.

Using these two screen-space attentional weights, our visual atten-
tion model takes into account important gaze behaviors observed
during real-time first-person navigation in VE.

3.3 Final screen-space attention and gaze position
computation

To compute the final 2D gaze position on the screen, the bottom-
up and top-down components described previously need first to be
combined in a single screen-space attention map.

3.3.1 Final screen-space attention map

Previous methods adapted to our context have proposed to compute
the user’s level of attention for each visual objects in the scene. To

do so, the saliency value is modulated with the top-down attention
value [Lee et al. 2009]. Then, 1 to 3 objects having the highest at-
tentional values are considered as the set of potentially gazed visual
objects. However, the use of such a model might be problematic no-
tably when the potentially gazed object is very large on the screen.
In our model, we remove this constraint by computing a single con-
tinuous gaze position on the screen.

To compute the final screen-space attentional map Attf , we first
compute the top-down attention value TD(p) for each pixel p on
the screen using Equation 7. This is achieved by rendering visible
objects from the camera’s point of view. In this equation, Task(s)
is a value in the range [0,1] defining surfel relevance for the current
task of the user, acting like a semantic weight, s is the position
of the surfel in the surfel map, and p is computed using simple
texture projection on meshes of ScrD and CamRot textures. In
our case, Task(s) is constant for each surfel of a single mesh to
reduce memory used but it could also be stored in the surfel map.

TD(p) =
Hab(s) + SC(s) + ScrD(p) + CamRot(p) + Task(s)

5
(7)

In the last step, the final attention map Attf is computed from both
the top-down and bottom-up components using Equation 8 (Fig-
ure 1-F). Finally, the gaze position is selected as the position of the
pixel having the highest attention level (Figure 1-G). Then, it is sent
to the gaze pattern simulator.

Attf (p) = vis(s)× S(p)× TD(p) (8)

3.3.2 Gaze pattern simulator

We have added a gaze pattern simulator in order to process possi-
ble gaze position changes and to smooth out the final gaze position
(Figure 1-H).

In the human visual system, the duration of eye saccades is from
120ms to 300ms long depending on the rotation of the eyes [Robin-
son 1965], and mean fixation duration varies between 200ms and
600ms. We consider a mean frequency of eyes saccades plus fix-
ation of 600ms. Thus, in order to smooth the final gaze position,
we low pass filter the input gaze position using a cut-off frequency
of 1.67Hz. This low pass filter allows the simulation of the smooth
pursuit phenomenon [Robinson 1965], occurring when eyes are fol-
lowing a smoothly moving visual object, while allowing fast gaze
jumps simulating saccades.

3.4 Implementation details and performance

To sum up, our visual attention model combines both bottom-up
and top-down attention components into a single attention map.
Using this attention map, it finally computes a continuous 2D gaze
position which is filtered by the gaze pattern simulator.

Our visual attention model is implemented using OpenGL and
GLSL. We have developed our own exporter from Maya which au-
tomatically generates the surfel map texture coordinates. The VE
are rendered using dynamically shadowed point and spot lights to-
gether with global illumination baked in a lightmap using Mental
Ray software. The renderer also features HDR rendering with sim-
ple luminance adaptation.

During the computation of the bottom-up saliency map, the feature
and conspicuity maps have all the same resolution of 256 × 256.
Our normalization operatorN , simplified as compared to [Itti et al.

Components Feature Conspicuity Saliency Per-surfel Total
maps maps map components

Performance 0.14ms 0.13ms 0.18ms 0.45ms 0.92ms

Table 1: Computation time in milliseconds for each step of our
visual attention model. (Per-surfel components refer to Figure 1
surfel part)

1998], needs parameters such as the maximum and mean values
contained in the conspicuity maps. To compute these parameters,
we do not iteratively read the entire map using the CPU as this
would be too expensive. Instead, we compute the maximum and
mean by recursively down-sampling the textures by a factor of two
until we reach the size of one texel which contains the final de-
sired values. In this algorithm, at each step, and for each pixel of
the coarser level, a fragment program computes the maximum and
mean values of the four corresponding pixels sampled from the tex-
ture computed in the previous step.

Updating the surfel maps first requires the copy of texture contain-
ing current surfel positions into the texture containing old surfel
positions. Then, the current surfel texture is updated only for ob-
jects that have moved since last frame. Furthermore, we update
the surfel texture only every 100ms in order to increase overall per-
formance. To update a surfel map, we must bind it as the current
render target and this is a costly operation. To avoid multiple render
target switches, the surfel maps of dynamic objects are packed in a
large texture atlas.

The final step of our visual attention model consists in computing
the final gaze position on the screen as the pixel having the highest
attentional value. For this aim, the Attf (p) is a 3-channel texture
which stores the final attention level in the red component and pixel
positions in the green and blue components. We then use the same
recursive down-sampling method, as to compute the normalisation
operator parameters, but we keep the coordinates of the pixel having
the highest attentional value.

The visual attention model we propose needs several input param-
eters: linear depth, screen space motion and surfel texture coordi-
nate. This could be considered as computationally too expensive.
However these raw data are already computed by many existing 3D
game engines to add visual effects such as depth-of-field or mo-
tion blur as well as atmosphere light scattering. Thus, adding our
model to an existing engine should not require too many additional
resources.

Our visual attention model can run in real-time thanks to the
graphic hardware. On a laptop PC (Intel Core 2 2.5Ghz, nVidia
GeForce3700M, 4Gb of RAM), the virtual scene VE1 (see Sec-
tion 4.2) is rendered at 145 frames-per-second (FPS) with the visual
attention model running, as compared to 170FPS without. Detailed
GPU computation times are given in Table 1. The low computa-
tion time of our visual attention model would allow it to be used in
several real-time 3D applications and games.

4 Experimental evaluation

We have conducted an experiment to evaluate the performance of
our visual attention model and compare it to the state-of-the-art
model of Lee et al. [Lee et al. 2009]. To the authors best knowl-
edge, this is the only model adapted to real-time 3D exploration of
VE proposed so far.
Twelve naı̈ve participants (10 males, 2 females) with a mean age
of 31.8 (SD=6.4) participated in our experiment. They were all
familiar with the first-person navigation paradigm and had normal

vision.

4.1 Experimental apparatus

During this experiment, we used a Tobii x50 gaze tracker to com-
pute participants’ gaze position. This gaze position is considered
as the ground truth. Participants were positioned in front of a 19”
flat screen at a resolution of 1280× 1024. The screen was 37.5cm
width. They were at a distance of 60cm from the screen and no
sound was played. The VEs were rendered in real-time with a con-
stant refresh-rate of 75Hz.

The navigation in the VE was achieved using first-person viewing
mode. In this case, the virtual camera is positioned at the level of the
eyes of user’s avatar. We allowed three degrees of freedom of dis-
placement: walking forward/backward and changing the horizontal
and vertical camera orientation, i.e. yaw and pitch angles. Walk-
ing forward or backward was achieved using the up and down ar-
row keys of the keyboard. Changing camera’s orientation (yaw and
pitch angles) was achieved using movements of the mouse. Mouse
correction and filtering were disabled. A horizontal mouse move-
ment of 2.5cm on the table resulted in a rotation of 90 degrees of
the camera in the VE (36 degrees/cm). Avatar properties were in-
spired by real data: height was 1.75m and walking speed was 1.15
m/s [Hillaire et al. 2009].

4.2 Procedure

For each participant, the experiment was divided in two parts. In
each of these parts, participants navigated in 3 different and ran-
domly presented virtual environments: (1) a dynamic and textured
VE with moving physical objects (VE1, Figure 3-A), a static and
textured VE (VE2, Figure 3-B) and a static and flat colored VE
(VE3, Figure 3-C).

During the first part, participants were asked to freely explore the
virtual environment without a specific task (Tf , use-case: virtual
visits). Then, during the second part, participants were asked to
search for keys hidden in the VE (task Tk), and to pick up a max-

B) VE2

C) VE3

TOP VIEW FIRST PERSON VIEW
A) VE1

Figure 3: The three virtual environments used in our experiment.
A) Textured and dynamic VE, B) textured and static VE and C) flat
colored and static VE.

imum of them (use-case: video games). The number of available
keys was not given to participants. The second part was meant to
study the performance of our model when a task is involved since
the presence of task is known to have an influence on gaze pat-
terns [Yarbus 1967]. To take into account the task involved during
the exploration, the Task(s) value was set to 1.0 for surfels be-
longing to keys and 0.5 for all other objects. The same task value
was used for the model of Lee et al. [Lee et al. 2009].

The experiment started with a training session in which participants
were able to get used with the navigation protocol during 1 minute.
Each navigation session of each part lasted 2 minutes. A calibration
of the Tobii gaze tracker was conducted at the beginning of each
part. For each participant, the overall experiment lasted 20 minutes.
All sessions were recorded, and we were able to replay each session
to evaluate the performances of the various visual attention models.

4.3 Results

To compare our model (Mour) with the model of Lee et al. [Lee
et al. 2009] (Mlee), we computed several performance indicators.
Performance indicator P1 represents the percentage of time spent
by the gaze point computed by each model inside a circle area hav-
ing a radius of r degrees of the visual field and centered on the gaze
point GT computed by the Tobii system (considered here as the
ground truth). We have tested several r values for P1: 2, 4, 6 and 8
degrees (respectively corresponding to a radius of 71, 143, 215 and
287 pixels). Performance indicator P2 represents the percentage of
time spent by the gaze point computed by each model on the same
object as the one located at the level of GT .

Concerning P1, the model proposed by Lee et al. [Lee et al. 2009]
was not designed to output a continuous 2D gaze point. Thus, we
propose to compute the final gaze position Glee corresponding to
the use of the model of Lee et al. [Lee et al. 2009] as the mean
of positions of pixels belonging to the selected visual object (the
one obtaining the highest attention). Our model is not designed to
output an attended mesh. Thus, concerning P2, we have computed
the final gazed object of our model as the mesh positioned under
the gaze point Gour computed by our model.

We have conducted a repeated-measures ANOVA on the dependent
variable P1 with the independent variables being the four radii r and
the models Mour and Mlee (Figure 4-A). The ANOVA revealed
a significant main effect of the model used (F (1, 11) = 313.32,
p < 0.01). Tukey post-hoc comparisons showed a significant dif-
ference between the two models for each radius value r (p < 0.01).
The ANOVA also revealed a significant radius × model interaction
(F (3, 33) = 234.68, p < 0.01) meaning that the difference in
accuracy between the two models significantly increases when r
increases. The detailed comparisons of both models concerning P1

are presented in Figure 4-B for the case where r = 4 (which was
related work [Hillaire et al. 2009]). In this case, we have conducted
a 2 (model) × 3 (VE) × 2 (task) repeated-measures ANOVA. It re-
vealed a significant main effect of the model used on performance
(F (1, 11) = 225.96, p < 0.01). Then, Tukey post-hoc compar-
isons showed that the performance of Mour model was signifi-
cantly higher than Mlee (p < 0.01) for all combinations of VE
and Task. This is confirmed by the fact that Gour was found to
be closer to GT than Glee 71% of the time. Furthermore, Tukey
post-hoc comparisons revealed that neither Mour nor Mlee per-
formance were influenced by the VE. Also, for each VE, They re-
vealed a significant difference of performance for Mour and Mlee
between Tf and Tk (in each case, p < 0.01).

Concerning the second performance indicator P2, a 2 (model) × 3
(VE) × 2 (task) repeated-measures ANOVA again revealed a sig-
nificant main effect of the model used on performance (F (1, 11) =

P1

13,9

40,6

61,7

75,6

5,1

17,4

29,2

39,7

0

10

20

30

40

50

60

70

80

r=2 r=4 r=6 r=8

%

%

%

%

%

%

%

%

%

1
4
,8
%

1
6
,4
%

1
4
,4
%

2
0
,0
%

1
5
,1
%

2
4
,0
%

3
5
,3
%

4
2
,4
%

3
7
,6
%

4
4
,9
%

3
8
,2
%

4
5
,2
%

EV1-Tf EV1-Tk EV2-Tf EV2-Tk EV3-Tf EV3-Tk

P1 details (r=4)(A)

10,6

31,8

52,6

69,4

8,3

24,9

40,2

53,3

0%

10%

20%

30%

40%

50%

60%

70%

80%

r=2 r=4 r=6 r=8
P1 Top-down – P1 details (r=4)

2
8
,5
%

2
8
,2
%

3
2
,4
%

3
6
,0
%

2
9
,5
%

3
0
,9
%

4
4
,8
%

5
0
,8
%

5
1
,1
%

5
8
,3
%

3
9
,0
%

4
5
,5
%

EV1-Tf EV1-Tk EV2-Tf EV2-Tk EV3-Tf EV3-Tk

Mlee

Mour

P2 details(B) (C) (D) (E)

Mour
Mour_td
Mour_bu

2
4
,1
%

2
9
,0
%

2
9
,6
%

2
4
,1
%

3
7
,0
%

2
5
,6
%

3
5
,8
%

3
4
,8
%

2
8
,1
%

4
5
,0
%

Tf

Tk

Mour_bu Mour_bu

+ Cam

Mour_bu

+ Surfel

Mour_bu

+ Task

Mour

Figure 4: Experimental results: performance obtained by various attention models (mean and standard deviation). A, B and C compare
our visual attention model (Mour) to the existing model of Lee (Mlee). D and E compare our complete model to its separated bottom-up
(Mour bu) and top-down (Mour td) components. A, B, D and E represent the percentage of time spent by the computed gaze point in a circle
having a radius of r degree of the visual field centered on the ground truth gaze position. C represents the percentage of time spent by the
computed gaze point on the same object as the one corresponding to the ground truth gaze position. A and D give global performance for
r = {2, 4, 6, 8}. B, C and E give performance details with r = 4 for each VE (1,2 and 3) and each Task (Tf and Tk).

560, p < 0.01). Figure 4-C exhibit a mean accuracy of 48.2% (SD
= 8.41) for our model Mour, and a mean accuracy of 30.9% (SD
= 5.6) for the previous model Mlee. The ANOVA also revealed a
significant Model× Task interaction (F (1, 11) = 8.32, p < 0.05).
Tukey post-hoc comparisons confirmed that Mour is significantly
influenced by the task (p < 0.05) with an accuracy of 51,5% (SD
= 7.7) for task Tf and of 44.9% (SD = 7.8) for task Tk. The other
model Mlee was not found to be significantly influenced by the
task (p = 0.87), which leads to an accuracy for P2 of 31,7% (SD =
5.5) for the task Tf and of 30.1% (SD = 5.1) for Tk.

Secondly, we have compared the performance P1 when using our
complete model Mour with the use of only its bottom-up compo-
nent Mourbu, or only its top-down component Mourtd (Figure 4-
D). The ANOVA revealed a significant main effect of the model
used on performance (F (2, 22) = 141.75, p < 0.01). Then, Tukey
post-hoc comparisons showed significant differences between each
model for each value of r (p < 0.01 in each case).

The top-down part of our model has been designed around three
major components: (1) the novel surfel-based representation of vi-
sual objects, (2) screen-space weights and (3) task. They corre-
spond to Surfel part, Cam part and Task in Figure 1. We have
further evaluated the elementary contribution of these three top-
down components with that of the bottom-up model only by suc-
cessively adding their contribution when r = 4 (see Figure 4-E). A
5 (model) × 2 (task) repeated-measures ANOVA revealed a signif-
icant main effect of the model used (F (4, 44) = 92.73, p < 0.01).
Tukey post-hoc comparisons showed that each model was signifi-
cantly different from the others excepted Mourbu + Cam as com-
pared to Mourbu+Surfel (p = 0.99), and Mourbu as compared
to Mourbu + Task (p = 0.98). The ANOVA also revealed a sig-
nificant model × task interaction (F (4, 44) = 5.50, p < 0.01). In
this case, Tukey post-hoc comparisons showed that each model was
significantly influenced by the task excepted Mourbu (p = 0.79)
and Mourbu + Task (p = 0.09).

4.4 Discussion

Overall, the results on two performance indicators show that our
model performed significantly better than the previous model of
Lee et al. [Lee et al. 2009] when exploring various 3D VE.

Firstly, concerning performance indicator P1, our model performed
significantly better than Mlee [Lee et al. 2009] (more than 100%

increase in performance), corresponding to a higher percentage of
time spent by our computed gaze point close to the ground-truth
gaze position (position given by the real gaze-tracker). Interest-
ingly the performance of our model was not significantly influenced
by the VE used. This suggests that our model is general enough
to support many different kinds of 3D VE. Secondly, we found
that both models performed significantly higher when the searching
task was given to participants. This suggests that, when an implicit
task is involved during the navigation, users’ attention seems more
predictable thanks to a higher correlation with the top-down com-
ponent controlling overall gaze direction [Itti 2005] and including
a task related weight. It also confirms Sundstedt et al. [Sundst-
edt et al. 2008] findings, suggesting that implementing a top-down
component is highly beneficial for a visual attention model.

The lower accuracy of Mlee concerning P1 is probably due to the
fact that this model was designed to output a 3D object and not a
continuous 2D gaze point on the screen. Thus, we have also com-
pared both models using a second performance indicator P2 which
represents the percentage of time spent by the computed gaze point
on the same object as the one corresponding to the ground truth
gaze position. Surprisingly, even in this case, our model gives sig-
nificantly better results than the previous model Mlee. Besides,
performance of Mlee was actually lower than the one reported in
their paper [Lee et al. 2009]. This could be due to the fact that in
[Lee et al. 2009] frames showing only the background were all ex-
cluded from the analysis, whereas, in our case, all frames were kept
except those were GT was reported as invalid.

Our results also revealed that the performance of our complete
model was significantly higher than that when using only its
bottom-up component alone or only its top-down component
(Mour vs Mourbu or Mourtd). This suggests that visual attention
models based only on a bottom-up or a top-down component would
not be as effective at computing human attention as compared to us-
ing both components together. In other words, this confirms again
the benefit of adding a top-down component to a visual attention
model as stated in [Sundstedt et al. 2008].

Furthermore, we have studied the contribution of separated top-
down weights (Figure 4-E). Our analysis also revealed that adding
screen-space weights, surfel weights or task weights to the single
bottom-up component Mourbu resulted in a significant increase in
the overall performance (for both Tf and Tk navigations). This
suggests that the component Cam, Surfel and Task are reliable

top-down weights. Finally, when combining all top-down compo-
nents together, the performance was also found to be significantly
better, suggesting that it is important to mix several top-down com-
ponents adapted to the context in which the visual attention model
is used in order to correctly identify areas of interest to the user.

When replaying sessions, we could visually observe that the ha-
bituation simulation was very useful to predict participants’ gaze
when discovering new rooms or looking behind objects. The habit-
uation simulation seems particularly effective during the searching
task Tk. Indeed, in this case, participants were actively search-
ing for keys in places they did not explore before. When navigat-
ing freely, the two statistical top-down components, CamRot and
ScrC, were also found helpful to better position the computed gaze
point at the center of the screen and/or in the direction of the cam-
era rotation when turning, i.e. where humans often gaze. However,
we could sometimes observe that participants were rapidly parsing
several areas of the screen in less than 2 seconds. In such cases,
no components were able to simulate and account for this fast gaze
pattern. This suggests that our model would benefit from the imple-
mentation of a more advanced gaze behavior simulator that would
accurately simulate saccade and smooth pursuit gaze patterns as
well as fast scene-parsing behavior.

Taken together our results suggest that our novel visual attention
model could be used in various real-time 3D applications involving
first-person navigation. The computed gaze point could be used
to better distribute computational resources to efficiently render a
VE [Lee et al. 2009]. It could also be used to simulate natural
effects occurring in human vision to improve graphical rendering
and immersion in the VE [Hillaire et al. 2008a].

5 Conclusion

In this paper, we have presented a novel visual attention model to
compute user’s gaze position on screen in real-time. This model
is specifically designed for exploration of 3D virtual environments
and can compute, for the first time, a continuous gaze point po-
sition. This novel visual attention model is made of two compo-
nents: a bottom-up and a top-down component. Contrary to pre-
vious models, which used a mesh-based representation of visual
objects, we have introduced a new data representation based on
surface-elements. We propose this solution to close the gap be-
tween screen-space and object-space approaches. The bottom-up
and top-down components are combined to create a final attention
map and compute the continuous gaze point.

We have conducted an experiment to study the performance of our
method. Overall, the results show that our model performed signif-
icantly better than a state-of-the-art model when exploring various
3D virtual environments with an increase in performance of more
than 100%. Taken together our results suggest that our novel vi-
sual attention model could be used in various real-time applications
such as video games or virtual reality systems.

Future work could first concern the improvement of our visual at-
tention model. We could notably enhance the gaze pattern simula-
tor by simulating real fixation/saccade and smooth pursuit pattern.
Second, we would like to further evaluate our model in various VE
and with various contexts such as virtual training, architectural vis-
its or games.

References

CATER, K., CHALMERS, A., AND WARD, G. 2003. Detail to
attention: exploiting visual tasks for selective rendering. Proc.
of the 14th Eurographics workshop on Rendering, 270–280.

CHEN, H., AND LIU, X. 2008. Lighting and material of halo 3.
Siggraph 2008 courses.

GLENSTRUP, A., AND ENGELL-NIELSEN, T., 1995. Eye con-
trolled media : Present and future state. Master thesis, University
of Copenhaguen.

HILLAIRE, S., LÉCUYER, A., COZOT, R., AND CASIEZ, G. 2008.
Using an eye-tracking system to improve camera motions and
depth-of-field blur effects in virtual environments. Proc. of IEEE
Virtual Reality, 47–50.

HILLAIRE, S., LÉCUYER, A., COZOT, R., AND CASIEZ, G. 2008.
Depth-of-field blur effects for first-person navigation in virtual
environments. IEEE Computer Graphics and Applications 28,
6, 47–55.

HILLAIRE, S., LÉCUYER, A., BRETON, G., AND REGIA-CORTE,
T. 2009. Gaze behavior and visual attention model when turning
in virtual environments. In Proceedings of ACM Symposium on
Virtual Reality Software and Technology, 43–50.

ITTI, L., KOCH, C., AND NIEBUR, E. 1998. A model of saliency-
based visual attention for rapid scene analysis. in IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 20, 11,
1254–1259.

ITTI, L. 2005. Quantifying the contribution of low-level saliency to
human eye movements in dynamic scenes. In Visual Cognition
12, 1093–1123.

LEE, S., KIM, G., AND CHOI, S. 2009. Real-time tracking of visu-
ally attended objects in virtual environments and its application
to LOD. In IEEE Transactions on Visualization and Computer
Graphics 15, 1 (Jan.-Feb.), 6–19.

LONGHURST, P., DEBATTISTA, K., AND CHALMERS, A. 2006.
A GPU based saliency map for high-fidelity selective rendering.
Proc. of the 4th international conference on Computer graphics,
virtual reality, visualisation and interaction in Africa, 21–29.

LUEBKE, D. P., AND HALLEN, B. 2001. Perceptually-driven sim-
plification for interactive rendering. In Proceedings of the 12th
Eurographics Workshop on Rendering Techniques, 223–234.

NAVALPAKKAM, V., AND ITTI, L. 2005. Modeling the influence
of task on attention. In Vision Research 45, 2, 205–231.

ROBERTSON, A. R. 1990. Historical development of cie recom-
mended color difference equations. In Color Research and Ap-
plication 15, 3, 167–170.

ROBINSON, D. A. 1965. The mechanics of human smooth pursuit
eye movement. Journal of Physiology 180, 569–591.

SEARS, C., AND PYLYSHYN, Z. 2000. Multiple object tracking
and attentional processing. Journal of Experimental Psychology
54, 1, 1–14.

SUNDSTEDT, V., STAVRAKIS, E., WIMMER, M., AND REIN-
HARD, E. 2008. A psychophysical study of fixation behavior
in a computer game. In Proceedings of the 5th symposium on
Applied perception in graphics and visualization, 43–50.

TREISMAN, A. M., AND GELADE, G. 1980. A feature-integration
theory of attention. In Cognitive Psychology 12, 1, 97–136.

YARBUS, D. 1967. Eye motion and vision. Plenum Press.

