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Abstract
This paper introduces the use of a visual attention model to improve the accuracy of gaze tracking systems. Visual
attention models simulate the selective attention part of the human visual system. For instance, in a bottom-up
approach, a saliency map is defined for the image and gives an attention weight to every pixel of the image as a
function of its colour, edge or intensity.

Our algorithm uses an uncertainty window, defined by the gaze tracker accuracy, and located around the gaze
point given by the tracker. Then, using a visual attention model, it searches for the most salient points, or objects,
located inside this uncertainty window, and determines a novel, and hopefully, better gaze point. This combination
of a gaze tracker together with a visual attention model is considered as the main contribution of the paper.

We demonstrate the promising results of our method by presenting two experiments conducted in two different
contexts: (1) a free exploration of a visually rich 3D virtual environment without a specific task, and (2) a video
game based on gaze tracking involving a selection task.

Our approach can be used to improve real-time gaze tracking systems in many interactive 3D applications such as
video games or virtual reality applications. The use of a visual attention model can be adapted to any gaze tracker
and the visual attention model can also be adapted to the application in which it is used.

Keywords: gaze tracking, visual attention model, saliency, first person navigation, virtual environment
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1. Introduction

Gaze trackers are systems used to compute the gaze position
of a human [GEN95]. The majority of gaze trackers are de-
signed to compute the gaze position onto a flat screen. Since
their creation in the late 19th century, before the computer
existed, these systems have advanced considerably [GEN95].
The interest in these systems has grown thanks to their useful-
ness in several domains: from human studies in psychology
to VR systems, as an aid for people with disabilities or to
accelerate the rendering process.

Many gaze estimation methods have already been pro-
posed. However, many of them suffer from their complex cal-
ibration procedures, their intrusiveness [KBS93], their cost
[Tob] or their cumbersomeness [BF03]. These systems are
often accurate but, for the reasons aforementioned, cannot
be sold on the mass market for daily use. Today, it would be
valuable to have a low-cost eye-tracking system relying for
instance on a basic web cam connected to a PC, and usable
in various conditions, without the need for operational ex-
pertise. It could be valuable for interactive 3D applications
such as video games, virtual reality applications, etc.
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Table 1: Summary of existing gaze tracking systems.

Horizontal Vertical
accuracy accuracy

Category Reference Hardware Intrusive (degree) (degree) Limitations

Intrusive Kaufman et al. [KBS93] Electrodes Yes 1.5 to 2 1.5 to 2 Intrusive
trackers Duchowski et al.

[DMC∗02]
Helmet with two

screens
Yes 0.3 0.3 Intrusive and expensive

Beymer et al. [BF03] Use of two steerable
cameras

No 0.6 0.6 Expensive and cumbersome

Tobii [Tob] Dedicated capture
system

No 0.5 0.5 Expensive

Remote gaze
trackers

Yoo et al. [YC06] Infra-red LED and
CCD camera

No 1.0 0.8 User must stay between 30
to 40 cm from the screen

Hennessey et al.
[HNL06]

Infra-red LED and
CCD camera

No 1.0 1.0 Infra-red light

Guestrin et al. [GE06] Two lights and one
CCD camera

No 0.9 0.9 Needs the use of 2 specific
light sources

Yamazoe et al.
[YUYA08]

CCD camera No 5.0 7.0 Low accuracy

ANN-based gaze
trackers

Baluja et al. [BP94] 640 × 480 CCD
camera

No 1.5 1.5 Non robust calibration

Piratla et al. [PJ02] 640 × 480 webcam Yes Not available Not available Non robust calibration

Visual objects
trackers

Lee et al. [LKC09] No hardware No Object based Object based Depends on the VE and
user’s task

In this paper, we present a novel way of improving the ac-
curacy of any gaze tracking system by using a visual attention
model. Our algorithm uses an uncertainty window, which is
defined by the accuracy of the gaze tracker, in which more
coherent gaze positions can be determined using a saliency
map [Itt05] encoding visually salient areas.

In the remainder of this paper, after exposing the related
work, we describe the low-cost gaze tracking system we used
to compute gaze positions using a web cam and an artificial
neural network. This gaze tracker is just an example used
to demonstrate the efficiency of our methods. The accuracy
and usability of this system is briefly discussed. Then, our
novel approach which uses visual attention models to im-
prove gaze tracking accuracy is presented. Finally, we report
on two experiments conducted to assess the benefits of the
proposed method. The paper ends with a general discussion
and conclusion.

2. Related Work

Over the last decade many gaze tracking systems have been
developed for various applications. Table 1 summarizes the
existing gaze tracking systems, considering the required
hardware and their current accuracy.

Intrusive gaze tracking systems are generally restrictive as
users have to wear heavy and uncomfortable equipment. As

an example, Kaufman et al. [KBS93] use electrooculography
to measure the eyes’ muscular activity. This method requires
the user to wear electrodes. Another technique requires the
user to wear induction coil contact lenses [GEN95]. The gaze
direction can be computed by measuring the high-frequency
electro-magnetic fields produced by these lenses. Both these
techniques require the user’s head to stay still. To overcome
this problem, Duchowski et al. [DMC∗02] propose a helmet
with an embedded screen for each eye. Two gaze trackers
based on the pupil-cornal reflection (P-CR) method are used
(one for each eye). Intrusive systems are precise enough to
be interesting for a research purpose, however, as shown
in Table 1, few gaze tracking systems are intrusive and the
current trend is towards the development of non-intrusive
systems.

A new kind of gaze tracker has recently emerged: remote
gaze tracker. Remote gaze tracking systems are ‘systems that
operate without contact with the user and permit free head
movement within reasonable limits without losing tracking’
[BMMB06]. These systems use either a high-resolution cam-
era or low-resolution web cam and allow users to feel more
free because they do not have to wear any devices. However,
they are generally less accurate than other gaze trackers.
Therefore, a lot of research is still going on to improve re-
mote gaze tracking systems. Beymer and Flickner [BF03]
propose a multi camera system tracking first the head of the
user using a camera with a wide field of view, then, one of
his eyes using a steerable high resolution narrow camera.
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Finally, a 3D representation of the eye is used jointly with
the infra-red light glint to evaluate the user’s gaze position.
Tobii technology [Tob] proposes a non-intrusive gaze track-
ing system which enables some moderate movement of the
user’s head. It uses expensive dedicated tracking devices us-
ing infra-red lights, though further implementation details
are not available [MM05]. Table 1 shows that these non-
intrusive systems are very accurate but most of them require
high expertise, are cumbersome [BF03] or very expensive
[Tob].

Other remote gaze tracking systems have been designed
to be used in everyday life by non-expert users with a sim-
ple and fast calibration process [GE06]. Some of the pro-
posed systems [HNL06, YC06] still require infra-red LEDs
but are able to achieve an accuracy of one degree under
head movement. All the presented remote gaze trackers use
a 3D representation of the eye or the P-CR method to com-
pute the gaze direction. The system developed by Yamazoe
et al. [YUYA08] is able to compute the gaze position without
infra-red light nor a calibration sequence. This system is ded-
icated to everyday use since it uses a single video camera.
It has a low accuracy of 5 degrees horizontally and 7 de-
grees vertically, but the results are promising and yet could
be improved.

Few gaze tracking systems based on an Artificial-Neural-
Network (ANN) have been proposed in the literature [BP94,
PJ02]. Baluja and Pomerleau [BP94] propose to send a low
resolution image of a single eye directly to an ANN. Piralta
and Jayasumana [PJ02] compute features describing the cur-
rent user’s state, i.e. eyes’ centre, distance between upper and
lower eyelid, etc. These features are then used as the input of
an ANN. Such systems only need a 640 × 480 web cam and
represent the screen as a discretized two-dimensional grid.

Visual attention represents the capacity of a human to
focus on a visual object. It is well known that human visual
attention is composed of two components [Itt05]: bottom-up
and top-down components.

The bottom-up component simulates the visual reflexes of
the human visual system. Due to the structure of our brain
and the fact that we only accurately perceive our environment
within 2 degrees of our visual field [CCW03], the human vi-
sual system does not have the capabilities to analyze a whole
scene in parallel. Actually, the human visual system can de-
tect primitive features in parallel, defining salient areas in
the visual field. Then, it uses a sequential visual search to
quickly analyze a scene [TG80]. For example, when some-
one first looks at a scene, his/her gaze is first unconsciously
attracted by visually salient areas to rapidly perceive the most
important areas [IKN98]. Several visually salient features
have been identified in previous research [TG80, IKN98]:
red/green and blue/yellow antagonistic colours, intensities,
orientations, etc. Inspired by the feature integration theory
[TG80], bottom-up visual attention models have been devel-
oped to compute a saliency map from an image [IKN98]

(for details on how to compute a saliency map, refer to
Section 4.2). When a human looks at a picture without any
task to do, the saliency value of each pixel of the saliency
map represents its attractiveness, i.e. the higher saliency of
an area, the more a human is likely to look at this area. Other
features have been progressively added in the computation
of saliency maps such as flickering [Itt05], depth [LKC09]
or motion [YPG01].

Moreover, visual attention is not only controlled by re-
flexes resulting from visual stimuli, but also by the cognitive
process that takes place in the brain, i.e. the top-down com-
ponent. It is involved in the strategies we use to analyze a
scene. For example, Yarbus [Yar67] has shown that the way
people look at pictures strongly depends on the task they
have to achieve. Furthermore, the top-down component is
subject to the habituation phenomenon [LDC06], i.e. objects
become familiar over time, and we become oblivious to them
[NI05]. Several models have been proposed to simulate the
top-down component using task-map [CCW03], habituation
[LDC06], memory [NI05] or spatial context [LKC09].

Nowadays, visual attention models are used in various
domains for several tasks. For example, they are used to
accelerate the rendering of virtual environments, i.e. reflec-
tion, global illumination, using selective rendering [CCW03,
LDC06, SDL∗05, HMYS01], for realistic avatar animation
[CMA03], mesh decimation [LVJ05], etc.

3. Our ANN-Based Gaze Tracker

We first propose a low-cost ANN-based gaze tracking system
using a single web cam. This gaze tracker, on its own, is not
necessarily new. We used it here as an example of a gaze
tracking system that can be improved using a visual attention
model.

In this section, we expose the hardware requirements, as
well as the software architecture of our ANN-based gaze
tracker. We detail the calibration sequence, i.e. how the ANN
is trained, and its real-time use. Finally we report on an ex-
periment conducted to measure the accuracy of this system.

3.1. ANN-based gaze tracking

Compared to previous gaze trackers based on ANN [BP94,
PJ02], we propose to transform the captured images of the
user’s eyes into higher level primitives. Left and right inter-
sections of the bottom and top eyelid of each eye are man-
ually selected by the user in the video recorded by the web
cam using two mouse clicks. Two points per eye are used
to extract the image of each eye. During this procedure, the
head is maintained in a constant position using a chin-rest.
Each time a frame is received from the web cam, the im-
ages of the user’s eyes are extracted and scaled to images of
width We and height He. Contrarily to Baluja and Pomerleau
[BP94] who send the picture of the eye directly to the ANN,
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we propose to transform it in order to reduce the number of
input of the ANN. First, we apply a contrast-limited adap-
tive histogram equalization filter to both images, previously
transformed from a RGB format to an intensity format, in or-
der to maximize their contrast. In order to reduce the amount
of data sent to the ANNs, for each eye image, the pixels of
each column and each row are added using Equations (1)
and (2) to respectively obtain two arrays Sx (of size We) and
Sy (of size He). After preliminary testing, we could notice
that this computation of gaze positions was more stable than
using the raw image

∀i ∈ [1,We], Sx[i] =
He∑
j=1

eyeImage[i][j ] (1)

∀j ∈ [1,He], Sy[j ] =
We∑
i=1

eyeImage[i][j ]. (2)

Finally, for each eye, Sx and Sy have their values mapped
from their range [min value, max value] to the range [0, 1].
This result is stored in S ′

x and S ′
y arrays. This mapping is

important as it allows us to take advantage of the full working
range of each neuron activation function. This latter is a linear
activation function which works in the [0, 1] range.

For each eye, the arrays S ′
x and S ′

y are sent to the ANNs.
Actually, two ANNs per eye are used : one computes the
horizontal position of the gaze point based on S ′

x and another
computes the vertical position of the gaze point based on S ′

y .
After preliminary testing, we found that using the S ′

x and
S ′

y arrays as input of two separate ANNs produces smoother
estimations of the gaze position. We also found that We =
40 pixels and He = 20 pixels make a suitable size for the
scaled image of the eyes given the resolution of the web
cam, i.e. 640 × 480, and learning capabilities of the ANN.
Moreover, each ANN is composed of two hidden layers; each
one containing twenty neurons. Using this architecture, our
algorithm is able to evaluate a continuous gaze position on
the screen contrary to previous ANN-based gaze trackers
which represent the screen as a 2D grid [BP94, PJ02].

3.2. Calibration sequence and gaze tracking

During the calibration sequence, each ANN is trained in
order to compute one coordinate of the gaze point based on
its associated eye image. For this aim, the user has to follow a
target which moves across the entire screen in order to allow
gaze tracking on the full screen surface. Finally, each ANN
is trained using the retro-propagation algorithm [Wer90].

At the end of the ANN training, the real-time gaze tracking
sequence is initiated. As explained before, the gaze tracker
computes a gaze position on the screen for each eye. The final
gaze position is computed as the mean of the two resulting
gaze positions: this produces smoother gaze movements.

Figure 1: Hardware setup.

3.3. Environment and hardware setup

The ANN-based gaze tracker we propose only requires one
web cam supporting video capture at a resolution of 640 ×
480 pixels. This system is designed to compute the user’s
gaze position on a flat screen.

The user’s head is expected to remain within the range
of 40 to 80 cm in front of the screen as illustrated in
Figure 1. Furthermore, during preliminary testing, we no-
ticed that our system works better when the height of the
eyes is at the level of the centre of the screen. For better per-
formance, we recommend positioning the web cam under the
screen and not over it. In this case, the eyes are more visible as
they are not hidden by dense upper eyelashes. Currently, the
system requires the user’s head to stay in a constant position
and orientation.

3.4. Accuracy

We assessed the accuracy of our ANN-based gaze track-
ing system by conducting an evaluation with 6 participants.
During the test, they were positioned in front of a flat 19′′

screen with a resolution of 1280 × 1024 pixels. They were at
a distance of 60 cm from the screen, i.e. resulting in a field-
of-view of 35 degrees. No sound was played. We used our
ANN-based gaze tracking system to compute, in real time,
the participants’ gaze position. Their head and eyes were
maintained in a constant position using a chin-rest. For each
participant, after the calibration sequence, the experiment
consisted in successively looking at nine white targets, each
one lasting 3 seconds. We recorded the participants’ gaze
positions computed by the ANN-based gaze tracker together
with the current real positions of the targets.

To assess the accuracy of the ANN-based gaze tracker,
we computed the differences between the participants’ gaze
points measured by the gaze tracker and the real targets’ po-
sitions on the screen. These differences correspond to the
distances between the gaze points and targets on the hori-
zontal and vertical axes in normalized screen coordinates.
During this sequence, the first 100 milliseconds after each
target changes were not taken into account in order to ignore
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Table 2: Mean and standard deviation (SD) for the horizontal and
vertical accuracy of our ANN-based gaze tracker.

Horizontal accuracy Vertical accuracy
(degree) (degree)

Mean 1.476 1.135
SD 0.392 0.254

errors due to saccades. The mean accuracies are shown in
Table 2. The accuracy is highly dependent on the shape of
the user’s eyes. For small and almost closed eyes, the accu-
racy can decrease to 1.81◦ whereas for users with wide open
eyes, it can increase to 0.78◦.

Since our system does not use infra-red light, the web
cam needs ambient light to capture clear images of the user’s
eyes. Moreover, it requires the user’s head to be maintained
at a constant position, although previous ANN-based gaze
trackers support head movements [BP94, PJ02] to some ex-
tent. However, it is used in this paper as an example of a
gaze tracker that can be improved by using a visual attention
model. To make this tracker suitable for a real use, e.g. for
gaming, it could be improved by taking into account the eyes
position in the video and yaw, pitch and roll angles of the
head similarly to [PJ02].

Our ANN-based gaze tracking system has the advantage of
computing a continuous gaze point position instead of a po-
sition in a two-dimensional grid representing the discretized
screen [BP94, PJ02]. This system is sufficient to achieve
various tasks in several environments such as in desktop
operating systems or 3D virtual environments. However, it
could be improved by taking advantage of the characteristics
of the human visual system. This is addressed in the follow-
ing section and it is considered the main contribution of the
paper.

4. Using Visual Attention Models to Improve
Gaze Tracking

We propose to improve the accuracy of gaze tracking systems
by using a visual attention model.

4.1. General approach

The main idea of our approach consists of looking for salient
pixels/objects located near the point given by the gaze tracker
and considering that the user is probably looking at these
pixels/objects. The global architecture of our algorithm is
shown in Figure 2. It consists of two steps: (1) a global step,
in which we compute the user’s gaze position using, as an
example, the ANN-based gaze tracker and (2) a refinement
step, in which we compute a saliency map using a bottom-up
visual attention model. Therefore, the method we propose to

Figure 2: Global architecture of our system combining clas-
sical ANN-based gaze tracking and visual attention model.

Figure 3: Algorithm used to compute the saliency map.

improve gaze tracking systems exploits characteristics of the
bottom-up component of the human visual system. We shift
the gaze point to the closest most salient pixel, corresponding
to the precise/final estimation of the user’s gaze point.

4.2. Computation of the saliency map

To compute the saliency map, we use the bottom-up visual
attention model presented in Figure 3. It is inspired by Itti
et al. [IKN98]. However, to reduce the computation time, it
is implemented on GPU hardware using shaders.

First, from the 3D virtual environment image rendered
from the current point of view, we compute four feature
maps. Originally, Itti et al. [IKN98] also used four fea-
ture maps: red/green and blue/yellow antagonistic colours,
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intensities and orientations. In this model, antagonistic
colours were computed using simple colour differences. Lee
et al. [LKC09] improved this computation by using the Hue
value of the Hue-Luminance-Saturation colour space. In our
case, we propose to use the Lab colour space which takes
into account the human visual system [Rob90]. In this colour
space, relative differences between colours are ‘almost per-
ceptually correct’ [cie71]. Moreover, this colour space has the
advantage of directly encoding red/green and blue/yellow an-
tagonistic colours as well as intensity, i.e. respectively the a,
b and L components. They correspond to Fa, Fb and Fl fea-
ture maps in Figure 3. In Itti et al. [IKN98], another feature
map encoding the orientations in the image using a Gabor
filter was computed. This filter is expensive to compute so we
propose to use an edge filter as in Longhurst et al. [LDC06].
It results in the feature map Fe. These feature maps are di-
rectly computed in real-time on the GPU using a shader and
stored in a single four-component texture.

Second, the feature maps need to be converted into
conspicuity maps using the multiscale Centre-Surround
difference operator as in [IKN98]. This operator aims at sim-
ulating the response of brain neurons which receive stimuli
from the visual receptive fields. Originally, it needs a dyadic
Gaussian feature map pyramid [IKN98]. In our case, we use
the same approach as Lee et al. [LKC09] which consists
of using a mipmap pyramid, containing the original feature
maps and several down-sampled copies at a lower resolution,
computed on the GPU to reduce computation time. The con-
spicuity maps, i.e. Cl, Ca, Cb and Ce in Figure 3, are finally
computed using Equation (3) with i and i + j being mipmap
pyramid levels. The level i is a fine level and i + j a coarser
level of the pyramid

∀x ∈ {l, a, b, e}, Cx = 1

6

2∑
i=0

4∑
j=3

∣∣F i
x − F i+j

x

∣∣ . (3)

Finally, the normalized saliency map is computed by a
linear combination of the four conspicuity maps using Equa-
tion (4) where S is the final saliency map, N a normalization
operator and wx = Mx − mx with Mx the maximum and mx

the mean of the values stored in the conspicuity map Cx. wx

is a factor promoting conspicuity map having small numbers
of strong peaks in [IKN98]

S = N
( ∑

x∈{l,a,b,e}
wx × Cx

)
. (4)

In order to compute the maximum and mean values of Cx ,
we do not iteratively read the entire conspicuity map using
the CPU as this would be too expensive. Instead, we compute
the maximum and mean by recursively down-sampling the
conspicuity map by a factor of two until we reach the size of
one texel which contains the final values. In this algorithm, at
each step, and for each pixel of the coarser level, a fragment
program computes the maximum and mean values of the
conspicuity map’s four corresponding pixels computed in

the previous step. Once we have obtained these parameters,
we can compute wx for each conspicuity map. In the last
step, the final saliency map is normalized using its maximum
value (operator N ). To find this maximum, we also use this
recursive algorithm.

As a result, using our algorithm, the saliency map is com-
puted in real-time using GPU hardware. It takes 9.1 millisec-
onds for our algorithm to compute a 256 × 256 normalized
saliency map on a nVidia GeForce 7900GTX. To sum up, our
algorithm combines techniques of Longhurst et al. [LDC06]
(orientation approximation by an edge filter) and Lee et al.
[LKC09] (fast centre-surround operator) bottom-up visual at-
tention models with the original model of Itti et al. [IKN98].
We have also accelerated the normalization process of the
saliency map by using a pyramid algorithm taking advantage
of the GPU hardware.

4.3. Final computation of the gaze position using
a saliency map

Given that the accuracy of the gaze tracking system and
the distance between the user and the screen are known,
we can compute the accuracy of the gaze tracking system
in screen coordinates. We define the accuracy Accx on the
x-axis and Accy on the y-axis in screen coordinates. From
these values, we can define an uncertainty window Wu. The
dimension of Wu are Wux = ws × 2.0 × Accx on the x-axis
and Wuy = ws × 2.0 × Accy on the y-axis, with ws being a
scale factor. Assuming that the user is gazing inside Wu, we
propose to improve the gaze tracker accuracy by searching
inside Wu for potentially more coherent, i.e. salient, gaze
points.

Itti [Itt05] has investigated the contribution of bottom-up
saliency to human eye movements. He found that the ma-
jority of saccades were directed toward a minority of highly
salient areas. Using a normalized saliency map, his exper-
iment showed that 72.3% of the participants’ gazes were
directed towards an area of the screen containing pixels hav-
ing a saliency value superior to 0.25. This disk area was
centred on the participants’ gaze point and has a diameter of
5.6 degrees of their field of view. He suggested that bottom-
up saliency may provide a set of gaze locations and that the
final gaze point is chosen according to a top-down process.
In our case, we know in which area of the screen the user is
gazing thanks to the gaze point estimated by the gaze tracker.
Thus, we simply propose to search in this area for highly
attractive, salient positions.

Based on Itti’s work [Itt05], our algorithm takes into ac-
count a saliency threshold St . First, it searches inside the
uncertainty window for the most salient position sp in the
normalized saliency map. Second, if the saliency value of sp
is greater than the threshold St , it sets the final gaze point
on sp. On the contrary, if sp is lower than St , the gaze point
remains unchanged.

c© 2010 The Authors
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



1836 S. Hillaire et al. / Using a Visual Attention Model to Improve Gaze Tracking Systems

Figure 4: Combination of low-cost gaze tracking and
saliency map to improve performance. Top: view of the scene,
bottom: the corresponding saliency map. In yellow, the gaze
point and the uncertainty window of the Tobii system (used
as theoretical gaze information). In green, the gaze point and
the uncertainty window of the low-cost gaze tracker. In red,
the gaze point computed by combining a low-cost ANN-based
gaze tracker and saliency map.

Following Itti’s work [Itt05], an efficient threshold value
for St would be 0.25 [Itt05]. However, this value can be
adapted according to the application for which the tracker is
used. For example, setting St to a value of 0 will always set
the gaze point position to the most salient pixel inside Wu. In
the experiment, we present in Section 5, we expose results
for several threshold values and several sizes of uncertainty
window.

In our model, we could have included a duration of fixa-
tion. However, Itti [Itt05] has shown that it is not correlated
to saliency values at the level of the gaze point. Moreover, to
the best of our knowledge, no other research has found a cor-
relation between saliency maps and gaze duration. Instead,
in order to avoid an instantaneous jump between the point
estimated by the gaze tracker alone and the gaze tracker im-
proved by the saliency map, the final gaze position estimation
is low-pass filtered using a cut-off frequency of 4 Hz.

The use of this algorithm is illustrated in Figure 4. In
this case, the gaze point estimated by the ANN-based gaze

tracker is far from that estimated by the accurate Tobii system.
However, when the ANN-based gaze tracker is combined
with a saliency map using our method, the final gaze point
is inside the ‘Tobii zone’. The Tobii zone takes into account
the accuracy of the Tobii system. It is a window centred
on the gaze point computed by the Tobii gaze tracker. The
size of this zone is defined by both the accuracy of the gaze
tracker (0.5◦ [Tob] for the Tobii system) and the distance
of the user from the screen (60 cm). On average, during
our two experiments, the sizes of Wu when using our ANN-
based gaze tracker were 300 × 340 pixels for a 1280 × 1024
screen. For the Tobii gaze tracker, the uncertainty window
sizes were 70 × 70 pixels.

5. Experiment 1: Influence of our Algorithm on the
Accuracy of Gaze Tracking during Free Navigation
in a Virtual Environment

Our first experiment aimed at measuring to what extent our
algorithm can improve the accuracy of gaze tracking systems
during free navigation in a 3D virtual environment without a
specific task. We computed the participants’ gaze positions
using three different systems: (1) ANN-based gaze tracker,
(2) ANN-based Gaze Tracker improved by the bottom-up Vi-
sual Attention Model (GTVAM) and (3) a Tobii gaze tracker
which is used to compute the ‘ground truth’ gaze position of
the user (Tobii).

Ten naı̈ve participants (9 males, 1 female) with a mean
age of 25 (SD = 2.4) participated in our experiment. They
were all familiar with the first-person navigation paradigm
and had normal vision.

During this experiment, we used the ANN-based gaze
tracker described in Section 3 and the Tobii ×50 gaze tracker
[Tob]. The ANN-based gaze tracker could be combined with
a visual attention model as described in Section 4. We tested
the performance of our algorithm under several conditions,
i.e. with different values for the saliency threshold St and
scale factor of the uncertainty window ws .

Participants were positioned in front of a flat 19′′ screen
at a resolution of 1280 × 1024. They were at a distance of
60 cm from the screen and no sound was played. Their heads
and eyes were maintained in a constant position using a chin-
rest. The virtual environment was rendered in real-time at a
constant frame-rate of 50 Hz. It represented the interior of a
house as shown in Figure 5.

5.1. Procedure

For each participant, the experiment consisted in visiting the
3D virtual environment freely. They navigated using a first-
person navigation paradigm using a keyboard to control their
motion on the horizontal plane or climb stairs, and the mouse
to look around.
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Figure 5: 3D virtual environment used for the experiment.

The experiment was divided into two parts. The first part
consisted in the calibration of the Tobii and the ANN-based
gaze tracking system. The training sequence of the ANN
lasted 30 seconds. Then, the second part of the experiment
began. During this part, the participants were free to navigate
around the 3D virtual environment. It is important to stress
that since we only tested the bottom-up component of the
human visual system (visual reflexes only), the navigation
duration was short (1 minute) and no particular task was
given to the participants.

5.2. Results

During the experiment, we recorded the participants’ gaze
positions using the accurate Tobii ×50 gaze tracker (com-
puting gaze position at 50 Hz) and the ANN-based gaze
tracker alone. We also recorded positions and movements
in the virtual environment of the virtual camera, as well as
position and orientation of dynamic objects. Then, offline,
we applied our method designed to improve gaze tracking by
replaying the recorded sequences of each participant.

As mentioned before, the two main parameters of our
model are the uncertainty window scale factor ws and the
saliency threshold St . To assess the influence of these param-
eters on the accuracy, we tested several values for these pa-
rameters: ws ∈ {1, 1.5, 2, 2.5, 3, 4} and St ∈ {0, 0.25, 0.5}.

We searched for the couple of parameters (ws∗,St∗) which
maximizes the time spent by the computed gaze point inside
the Tobii zone. We found that the best values were the same
in the two conditions, i.e. the window size ws∗ equals to 1.5
and the saliency threshold St∗ equals to 0.0 (see Figure 6).

Then, we compared the performances of our method with
performance obtained in two other conditions: ANN alone
and saliency map alone. We tested whether the time spent
inside the Tobii zone (ZONE) is significantly different for

Figure 6: Left: time spent looking inside the Tobii zone with
our approach (GTVAM) for several values of St and ws .
Right: time spent looking at the same virtual object as de-
tected with the Tobii system for several values of St and
ws .

Table 3: Mean performance of our approach (GTVAM) as com-
pared to the ANN-based gaze tracker alone and saliency map alone
(i.e. using the whole image on screen).

GTVAM
Saliency (St = 0.0,

map alone ANN alone Ws = 1.5)

Time inside
Tobii zone

4.4% (2.64s) 5.3% (3.19s) 12.3% (7.37s)

Time on same
object as
Tobii

23.5% (14.07s) 37.9% (22.75s) 63.1% (37.85s)

the GTVAM condition as compared with ANN alone and
saliency map alone conditions. The same procedure was per-
formed based on the time spent on the same object as the
one detected by the Tobii (OBJECT). To compute the object
visible at a position on the screen, we used an item buffer
containing the unique ID of the visible object at each pixel.
The results are summarized in Table 3. To test whether the
differences observed are significant or not, we used paired
Wilcoxon tests. We first compared ANN alone and GTVAM
gaze tracking conditions using the ZONE and OBJECT mea-
sures. We found that the distributions are significantly differ-
ent for the ZONE (p < 0.01) and OBJECT (p < 0.01) mea-
sures. Then, we compared Saliency map alone and GTVAM
conditions. We found that the distributions are significantly
different for the ZONE (p < 0.01) and OBJECT (p < 0.01)
measures. These results show that our method is able to in-
crease the accuracy of gaze tracking systems.

5.3. Discussion

First, this experiment could be considered as an introduction
to a methodology to compute optimal values for the param-
eters of our algorithm, i.e. St and ws . The values we found
can be considered as good indicators for implementing our
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approach in similar configurations. Of course, for determin-
ing optimal values adapted to another configuration (screen
size, application, etc), another procedure could be achieved
using the same methodology as described in this paper.

Second, in this study, we defined two measures to assess
the validity of using a saliency map computed from a bottom-
up visual attention model to improve gaze tracking: time
spent by the final gaze point inside the Tobii zone (ZONE)
and time spent on the same object as Tobii (OBJECT).

We found that the ZONE and OBJECT measures were
significantly improved when using the GTVAM condition as
compared to the ANN alone condition. Besides, the accuracy
of the Tobii system, which is 0.5 degree of angle, might
have reduced the efficiency of our method. The gaze point
computed by this system, considered as the ground truth,
might sometimes not be located on the object actually gazed
by the user. This has been especially observed when the user
is gazing at the border of the screen.

Moreover, the uncertainty window may sometimes con-
tain several salient areas that are competing for the final gaze
position and the user may not look at the most salient pixel in
the normalized saliency map. We can illustrate this with the
condition where the higher value in the normalized saliency
map of the whole screen is considered as the gaze point, i.e.
Saliency map alone condition in Table 3. In this case, the
selected gaze position is inside the Tobii zone only 4.4% of
the global time. This correlates with Itti [Itt05] results that
show that the user does not constantly look at the highest
salient pixel. In a virtual environment (VE), a task may al-
ways be implied and this would reduce the attractivity of
some salient areas [SSWR08], something that the model we
used does not take into account for the moment. Further-
more, with our technique, it could be impossible to fixate on
some non-salient areas. The use of top-down visual atten-
tion components could remove these two inherent problems.
Components such as habituation [LDC06], spatio-temporal
context [LKC09] or task relevance of objects [CCW03] could
be added to our algorithm.

Taken together, our results suggest that the straightfor-
ward method we propose can significantly increase gaze
tracker performance, especially in the case of object-based
interaction.

6. Experiment 2: Influence of our Algorithm
on the Accuracy of Target Selection Task during
a Video Game

Our second experiment aimed at measuring to what extent
our algorithm can improve gaze tracking systems. For this
aim, we have developed a simple video game, involving a
selection task, in which users play using only their eyes. We
again compared three different gaze tracking approaches:
(1) ANN-based gaze tracker, (2) ANN-based gaze tracker

Figure 7: Screenshot of the game used where players have
to look at space ships to destroy them.

improved by the bottom-up visual attention model (GTVAM)
and (3) Tobii gaze tracker.

Ten naı̈ve participants (9 males, 1 female) with a mean
age of 26.8 (SD=3.2) participated in our experiment. These
people did not participate in the previous experiment and had
normal vision.

6.1. Procedure

The same apparatus as described in Section 5 was used. For
each participant, the task consisted in destroying ships flying
through space as shown in Figure 7. They just had to look
at one ship to destroy it automatically after a dwell-time
of 600 ms. Participants were asked to destroy only enemy
ships and not allied ships. Participants had 90 seconds to
destroy as many enemy ships as possible. If all enemy ships
were destroyed before the end, the game was automatically
stopped.

Participants stared in front of the screen, interacting only
with their eyes. The camera in the virtual environment was
still. There were 15 enemy ships flying and following ran-
domized straight trajectories: 5 ships flying at a distance of
D1 = 45 m from the camera, 5 ships flying at a distance of
D2 = 80 m and 5 ships flying at a distance of D3 = 115 m.
The ships crossed the screen randomly from left to right, or
from right to left. There were also 5 allied ships flying and
following random trajectories at a distance between 45 m to
115 m. Once a ship left the screen, its new trajectory was
computed and its dwell-time value was restored to 0 ms. In
each condition, the final gaze point computed by the system
is used to detect if the user is looking at a ship or not. To do
so, we use a classical ray-triangle intersection algorithm at
the level of the gazed pixel.
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Table 4: Mean and standard deviation for each measure of the game experiment for each gaze tracking condition.

Enemy ships Allied ships Game time Destroyed Destroyed Destroyed Time on no
destroyed destroyed (s) at D1 at D2 at D3 object (s)

ANN 4.55 (2.5) 0.1 (0.3) 90.0 (0.0) 3.8 (1.8) 0.75 (1.3) 0.0 (0.0) 83.0 (2.3)
Tobii 11.6 (2.7) 0.05 (0.2) 85.3 (10.5) 5.0 (0.0) 4.4 (1.1) 2.2 (1.9) 74.1 (11.2)
GTVAM 15.0 (0.0) 0.75 (0.8) 33.2 (18.1) 5.0 (0.0) 5.0 (0.0) 5.0 (0.0) 21.2 (18.5)

During the experiment, the participants played the game
six times, two times under each gaze tracking condition. The
order of presentation of each gaze tracking condition was
counterbalanced. At the end of each game, we recorded the
game duration, number of enemy ships destroyed for each
distance D1 to D3, number of allied ships destroyed and
time spent gazing at no objects.

6.2. Results

Using the Wilcoxon paired test, we found that our technique
(GTVAM) is significantly more efficient to destroy enemy
ships than the ANN gaze tracker alone (p < 0.01). Surpris-
ingly, our algorithm was found even more efficient than the
Tobii (p < 0.01) gaze tracker. The mean and standard devi-
ations for each measure are summarized in Table 4.

We could decompose the performance for each distance
D1 (near), D2 and D3 (far). We found that GTVAM gave bet-
ter performances than ANN alone for each distance D1, D2
and D3 (Wilcoxon paired test p < 0.01, p < 0.01, p <

0.01). This corresponds to three different sizes of ship on
screen: 200, 100 and 40 pixels. We also found that the dif-
ference was not significant between GTVAM compared with
Tobii for distance D1 and D2, but significantly different
for distance D3(p < 0.01). This result shows that the bet-
ter performance of GTVAM compared with Tobii is due
to the destruction of the farthest targets (smaller ships on
screen).

Another way to evaluate the efficiency of our algorithm
is to measure the time spent to complete the mission (de-
struction of the 15 enemy ships). The GTVAM gaze tracking
condition is more efficient when compared with ANN alone
(Wilcoxon paired test p < 0.01) and Tobii (Wilcoxon paired
test p < 0.01) conditions. We also computed the time spent
on no object and we found that GTVAM is more efficient
than the ANN alone (Wilcoxon paired test p < 0.01) and
Tobii (Wilcoxon paired test p < 0.01) conditions.

Our algorithm (GTVAM) is significantly less efficient con-
cerning the destruction of allied ships as compared with ANN
alone (Wilcoxon paired test p < 0.01) and Tobii (Wilcoxon
paired test p < 0.01). However, the number of erroneous
destructions in the case of GTVAM remains very low (on
average less than 1 error per participant).

6.3. Discussion

Overall, using the ANN-based gaze tracking condition com-
bined with our method (GTVAM), participants performed
better in the game as compared to the ANN alone and Tobii
gaze tracking conditions (Table 4). The GTVAM condition
allowed the participants to finish the game faster than un-
der the two other conditions. This is due to the fact that
the game ends when all enemy ships are destroyed and this
happened only when the GTVAM gaze tracker is used. It
can be explained by the lower time spent on no objects in
this condition as compared with the two other gaze tracking
conditions. However, the number of allied ships destroyed
erroneously is significantly higher compared to ANN alone
and Tobii conditions. This is a well-know problem in gaze
tracking called the Midas Touch Problem [Jac95], i.e. peo-
ple just want to look at an item but it results in an unwanted
action. This emphasizes the fact that the method we propose
might result in erroneous, i.e. non-intentional, selection. A
simple way to reduce these errors would be to ask the player
to push a button to fire at enemies.

As shown by Sundstedt et al. [SSWR08], a saliency map
alone is not sufficient to predict the users attention, especially
when a task is explicitly given to the user. In our case, the
black background probably helped the GTVAM model. If
we had used a more complicated background, e.g. stars and
planets, the GTVAM could have performed lower. To over-
come this problem, it would be important to take into account
the destruction task in the visual attention model such as in
[CCW03, LDC06, SDL∗05, LKC09]. In this case, we would
give a high weight to the enemy ships, a lower weight for
the allied ships and a slight weight for the decorative back-
ground.

Our analysis showed no significant difference in the num-
ber of enemy ships destroyed for near distances (D1 and
D2) between the Tobii and GTVAM conditions. However,
the GTVAM gaze tracker has a significantly higher number
of far enemy ships (D3) destroyed. First, it shows that our
algorithm can compensate for the low accuracy of a gaze
tracker in such a case. Second, it suggests that it can com-
pensate for the latency in the estimated gaze point position.
This latency is due to the acquisition/processing of video and
to the computations needed to evaluate the final gaze posi-
tion on screen. Indeed, thanks to the uncertainty window, the
method we propose is able to set the gaze point on salient
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objects away from the current gaze point which is subject to
latency.

To sum up, despite a small amount of erroneous selections,
the GTVAM gaze tracking condition allowed participants to
globally perform better in the game. The time to finish the
game was the shortest and all enemy ships were destroyed.
This experiment emphasizes the fact that the use of a saliency
map can increase the tracker accuracy and can also compen-
sate the latency of the tracking systems.

7. Conclusion

We have introduced the use of visual attention models to
improve the accuracy of gaze tracking systems in interactive
3D applications.

We have proposed an algorithm using a saliency map
which is meant to improve the accuracy of any gaze track-
ing system such as the ANN-based gaze tracking system
described here. It uses an uncertainty window defined by
the gaze tracker accuracy and located around the gaze point
given by the tracker. Then, the algorithm searches for the
most salient points, or objects, located inside this uncertainty
window, and determines a novel and, hopefully, better gaze
point. We have presented the results of two experiments con-
ducted to assess the performance of our approach. The results
showed that the method we propose can significantly improve
the accuracy of a gaze tracking system. For instance, during
free first-person navigation, the time spent by the computed
gaze point on the same object as the ground truth gaze point
is increased by 66%. Thus, our approach seems especially
interesting in the case of object-based interaction. It even
performs better than the accurate Tobii gaze tracker in a
game requiring the selection of small visual objects to de-
stroy them. On average, using our approach, the player could
destroy two times more small objects on screen than with the
standard Tobii system.

Taken together, our results show a positive influence of
our algorithm, i.e. of using visual attention models, on gaze
tracking. Our approach could be used in many applications
such as for video games or virtual reality. Our algorithm
can be adapted to any gaze tracking system and the visual
attention model can also be extended and adapted to the
application in which it is used.

Future work could first concern the evaluation of our
method under higher-level tasks by adding top-down com-
ponents such as proposed in [PI07, SDL∗05] or [LKC09].
Second, we could propose using this approach to design new
techniques to accelerate [HMYS01] or to improve [HLCC08]
the rendering of virtual environments.
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