
Published by the IEEE Computer Society	 0272-1716/08/$25.00 © 2008 IEEE	 IEEE Computer Graphics and Applications� 47

VR Software and Technology

Depth-of-Field Blur Effects
for First-Person Navigation in
Virtual Environments
Sébastien Hillaire ■ INRIA/France Télécom R&D

Anatole Lécuyer ■ INRIA/Collège de France

Rémi Cozot ■ University of Rennes 1/INRIA

Géry Casiez ■ University of Lille 1/INRIA

In human vision, the depth of field (DoF) is the
range of distances near the focus point where
the eyes perceive the image as sharp. Objects

behind and in front of the focus point are blurred.
DoF and its associated blur effects are well-known
classic depth cues in human vision.1 Virtual im-
ages that lack a DoF blur can sometimes look “too
perfect” and therefore synthetic. System designers
therefore added DoF blur effects early to computer
graphics pipelines.2 Movies also use the classic blur
effects of focal-distance changes to convey sensa-
tions or otherwise capture viewers’ attention.

Real-time VR applications haven’t yet introduced
visual blur effects. We now have the programming
capabilities and the processing power to compute
them in real time. However, we don’t know how
such effects will influence user performance and
subjective experience. We therefore need to

develop new models of realistic visual blur ef-
fects for virtual environments (VE), taking
interactivity and real-time constraints into ac-
count, and
evaluate visual blur effects in terms of both VE
user performance and subjective preferences.

Here, we describe a novel model of dynamic vi-
sual blur for first-person VE navigation. We also
report results from an experiment to study how

■

■

the blur effect influenced gamers’ performance
during a multiplayer first-person-shooter (FPS)
session.

Visual Blur Effects for
First-Person VE Navigation
We use a model for dynamic visual
blur that combines DoF and pe-
ripheral blur effects. For landmark
research and state-of-the-art im-
plementations relative to these
topics, see the sidebar, “Develop-
ment and Related Work in Visual
Blur Effects” (next page).

The DoF Blur Effect
This effect simulates visual blurring
by blurring the pixels of objects in
front of or behind the focus point.
The focus point is associated with
a focal distance (fd)—the distance
between the eyes (or camera) and
the focus point.

The lens model. We use the classic lens model intro-
duced by Michael Potmesil and Indranil Chakra-
varty.2 In this model, the amount of blur—that is,
the diameter of the circle of confusion (DCoCdep)
of a point projected on screen—is

Depth-of-field blur effects
are well-known depth cues
in human vision. Computer
graphics pipelines added
DOF effects early to enhance
imagery realism, but real-
time VR applications haven’t
yet introduced visual blur
effects. The authors describe
new techniques to improve
blur rendering and report
experimental results from
a prototype video game
implementation.

48	 November/December 2008

VR Software and Technology

DCoC
D f f

f f
d

d
dof =

× × −
× −

z

z

()
()

� (1)

where D is the lens diameter, f is the lens focal length,
fd is the focal distance, and z is the point depth.

The autofocus zone. Eye-tracking systems offer an

optimal way to determine the focal distance in
real time.3 However, such devices are expensive,
complex, and unavailable for a mass market. In
the absence of such a system, we chose a para-
digm used in FPS games, where users employ a 2D
mouse and keyboard to manipulate a virtual visor
always located at the screen’s center. In this ap-
proach, we can assume the user looks mainly at

Computer graphics researchers introduced visual blur
simulation early to improve the photorealistic as-

pect of synthetic images. Michael Potmesil and Indranil
Chakravarty first proposed simulating an optical lens
to simulate depth-of-field (DoF) blur. Their algorithm
uses the original sharp image, each pixel’s depth, and a
postprocessing step to compute the blur. The lens simula-
tion provides the amount of each pixel’s blur according
to its depth. With lens simulation, an out-of-focus point
becomes a disk or circle after the projection through the
lens. The diameter of the resulting circle of confusion
(CoC) corresponds to the amount of blur.1

After Potmesil and Chakravarty’s pioneering study, most
researchers used this lens model to compute the DoF blur.2
However, Brian Barsky introduced the alternative concept
of vision-realistic rendering, which uses all of an individual’s
optical-system characteristics.3 This let Barsky accurately
simulate the foveal image scanned from wavefront data of
human subjects as measured by an aberrometry device.

The main problem of DoF blur algorithms is color leaking
across depth discontinuities. This artifact blurs edges of
in-focus objects that are in front of a blurred background.
DoF algorithms compute the blur itself and avoid color
leaking in different ways. In a survey of DoF algorithms,
Joe Demers divides the different techniques into three
main categories: scattering, gathering, and diffusion.2
Gathering techniques (also called reverse-mapping tech-
niques) use only the sharp image’s pixels. For each of the
final image’s pixels, the algorithm gathers and blends
source-image pixel colors that belong to the current
pixel’s CoC. Simple depth tests during the gathering step
avoid color-leaking artifacts. This approach is easily imple-
mented on current graphics hardware.4

Other blur effects can further enhance digital images’
appearance. For instance, peripheral blur refers to the eye’s
coarser acuity from the fovea to the periphery.5 Nelson
Max and Douglass Lerner define a motion blur that simu-
lates the images obtained from a digital camera.6 This blur
corresponds to the recording of objects that move rapidly.
Indeed, integrating such images while the shutter is open
generates a blur.

Julian Brooker and Paul Sharkey investigated the DoF
blur effect using a stereoscopic display and an eye-track-
ing system to find a path in a 3D labyrinth.7 However,

their results show no evidence of performance improve-
ment. They concluded that their application’s very slow
frame rate might have been the cause and suggested
implementing and further evaluating real-time DoF blur
effects in virtual environments.

Przemyslaw Rokita first suggested using visual blur
effects in VR.8 In the latest generation of video games,
Epic Games’ Unreal Engine 3 (www.epicgames.com) and
Crytek’s CryEngine 2 (www.crytek.com) propose tem-
porary DoF blur together with motion blur. Techland’s
Chrome Engine (www.development.techland.pl) also
introduces a dynamic DoF blur effect, but it remains lim-
ited to a “sniper mode” with only a few depth plans. All of
these DoF blur effects suffer from leaking artifacts.

References
	 1.	 M. Potmesil and I. Chakravarty, “A Lens and Aperture Camera

Model for Synthetic Image Generation,” Proc. Siggraph, ACM

Press, 1981, pp. 298–306.

	 2.	 J. Demers, “Depth of Field: A Survey of Techniques,”

GPU Gems, R. Fernando, ed., Addison-Wesley, 2004, pp.

375–390.

	 3.	 B.A. Barsky, “Vision-Realistic Rendering: Simulation of the

Scanned Foveal Image from Wavefront Data of Human

Subjects,” Proc. Symp. Applied Perception in Graphics and

Visualization, ACM Press, 2004, pp. 73–81.

	 4.	 G. Riguer, N. Tatarchuk, and J. Isidoro, “Real-Time Depth of

Field Simulation,” ShaderX2: Shader Programming Tips and

Tricks with DirectX 9, Wolfgang Engel, eds., Wordware, 2003,

pp. 529–556.

	 5.	 M. Sereno et al., “Borders of Multiple Visual Areas in

Humans Revealed by Functional Magnetic Resonance,”

Science, vol. 268, no. 5212, 1995, pp. 889–893.

	 6.	 N. Max and D. Lerner, “A Two-and-a-Half-D Motion-Blur

Algorithm,” Proc. Siggraph, ACM Press, 1985, pp. 85–93.

	 7.	 J.P. Brooker and P.M. Sharkey, “Operator Performance

Evaluation of Controlled Depth of Field in a Stereographically

Displayed Virtual Environment,” Stereoscopic Displays and

Virtual Reality Systems VIII, Proc. SPIE, vol. 4297, 2001, pp.

408–417.

	 8.	 P. Rokita, “Generating Depth-of-Field Effects in Virtual

Reality Applications,” IEEE Computer Graphics & Applications,

vol. 16, no. 2, 1996, pp. 18–21.

Development and Related Work in Visual Blur Effects

	 IEEE Computer Graphics and Applications� 49

the part of the screen close to the visor. In fact,
using an eye-tracking system, Alan Kenny and his
colleagues found that more than 82 percent of the
time, FPS video gamers indeed watched a central
area corresponding to half the monitor’s size.

We therefore introduce a notion called the au-
tofocus zone—an area at a screen’s center that the
user is supposed to look at preferentially. This re-
calls digital-camera autofocus systems, which also
aim to determine an appropriate focal distance
when taking a picture. We can compute the depth
of autofocus-zone pixels by using an auxiliary buf-
fer. As in digital cameras, the function to compute
the focal distance from the depths of all pixels
in the autofocus zone could be minimum, maxi-
mum, or average. In FPS games, some objects in
the environment are more important—for exam-
ple, enemies or bonus objects. We therefore use a
semantic weighting of pixel depths. The semantic
weighting increases the pixel weights correspond-
ing to objects (or targets) known to be important
in the scene. We do so by adding a field to the
initial virtual-object description that corresponds
to the object’s visual semantic weight. Each pixel’s
semantic weight ranges from WSmin to WSmax.

Figure 1 illustrates the use of semantic weight-
ing. In this example, the weight of the character in
front is much higher than that of the background.
Even if the character covers fewer pixels than the
background (less than one-quarter of the area),
the focus is systematically on the front charac-
ter. In the work we describe here, the semantic
weights remain constant. However, other applica-
tions could use dynamic weighting. For instance,
we could simulate the habituation phenomenon
by progressively decreasing each object’s semantic
value on the basis of how long the object remains
on the screen.

In addition, we introduce a spatial weighting
that slightly modifies the central pixels’ weight.
We use a Gaussian function that gives a weight
of WGmax to the center and WGmin to the zone’s
borders. Finally, we compute the resulting focal
distance fd:

W p WS p WG d AC p

WD p W p p

fd

() () ()()
() () ()

= ×

= ×

2

depth

==
WD

W

p

p

p

p

()
()

∈

∈

∑
∑

zone

zone	� (2)

where WS(p) is the semantic weight of pixel p,
WG(x) is the Gaussian spatial weight for distance
x, and d2AC(p) is the distance of p from the auto-
focus zone’s center.

When we implemented the final blur model to
study its influence on gamers’ performance, we set
WGmin to 0.7, WGmax to 1, WSmin to 0.004, and
WSmax to 1.

GPU computation of focal distance. Computing Equa-
tion 2 on a CPU takes a long time, especially for
a large autofocus zone. We therefore compute the
focal distance using a general-purpose technique
on a GPU (GPGPU).

To evaluate fd using Equation 2, we must calcu-
late computationally expensive sums, which can
produce number overflow. So we replace the sum
operation by the mean operation using equation 3:

WD p WD p

W p W p

p
() () ()

() ()
∈∑ = ×

= ×

card zone

card

zone

zzone
zone

()
∈∑ p � (3)

First, we store the values of WD(p) and W(p) in
a 2D texture that’s the size of the autofocus zone.
Then, we compute this texture’s mean by recur-
sively downsampling the texture by a factor of two
until we reach the size of one texel, which finally
contains the means WD p() and W p(). In this al-
gorithm, at each step and for each pixel, a frag-
ment program computes the mean of the texture’s
four corresponding texels computed at the preced-
ing step. Using this technique, we can finally ac-
celerate the focal distance fd computation using a
GPU instead of a CPU.

Simulation of accommodation. Human eyes take a
few milliseconds to accommodate a change in
focus point. We simulate this accommodation
phenomenon in our DoF blur effect by adding a
temporal filter to the final focal-distance compu-
tation. After preliminary testing, we chose a low-
pass filtering:

f n f n
Te

f n

Te

d d d() () −()





= +
+

τ
τ1

1

1

	

� (4)

where τ equals (π × fc)/2, fc is the cut-off frequency
in Hertz, Te is the sampling period in seconds, fd(n)
is the filtered focal distance at frame n, and fd(n)

Figure 1.
The depth-
of-field blur
when using a
rectangular
autofocus zone
(the white
rectangle):
(a) Without
semantic
weighting, the
focus is on the
background.
(b) With
semantic
weighting,
the focus is
automatically
set on the
important
character.
(Quake
III Arena
screenshot,
courtesy of
IdSoftware)

(a)	 (b)

50	 November/December 2008

VR Software and Technology

is the focal distance given by the autofocus system
(before filtering).

In our final implementation, we used Te = 1/70 s
and fc = 5 Hz.

The Peripheral Blur Effect
We simulate the peripheral blur by decreasing an
image’s sharpness, when it’s at the image scene’s
periphery. The effect progressively blurs the pixels
located at a certain distance from the focus area’s
center.

The peripheral blur is independent of the DoF
blur. We added it as a supplementary visual ef-
fect, expecting that it might enhance the user’s
sensory experience. However, we also expected it
to encourage users to look at the screen’s center.
Indeed, by slightly blurring an image’s contour, we
hoped to force the user to look through the visor—
that is, inside the focus area. Equation 5 computes
the amount of peripheral blur for each pixel:

DCoC
n

per = − 11
z p×






 � (5)

where z is the look-at direction (for example, the
camera’s direction when the focus area is at the
image’s center) and p is the normalized direction
of the pixel in the camera frame.

In our final implementation, we used a power
n equal to 2.

The Final Blurred Image
After we compute both the peripheral and DoF blur
amount, we can compute the final blurred image.

Computing the final blur amount. The total amount
of blur for each pixel corresponds to the final diam-
eter of its circle of confusion (DCoCfin). Equation
6 shows the contributions of both the peripheral
and DoF blurs:

DCoCfin = Dmax × min(1, DCoCdep + DCoCper)� (6)

where Dmax is the maximum amount of blur (the
maximum diameter of the pixel’s final CoC),
DCoCdep is the normalized diameter of the DoF
blur’s CoC, and DCoCper is the normalized diam-
eter of the peripheral blur’s CoC. In our imple-
mentation, we set Dmax to 11 pixels.

Rotating the blur sampling kernel. Our blur algo-
rithm is based on a gathering blur technique.4 This
technique mixes the colors of 12 samples, which
form the sampling kernel. To compute the blur, the
color samples come from inside the CoC according
to a Poisson-disk distribution. In this case, ghost-
ing artifacts appear—that is, objects seem to dupli-
cate (see Figure 2). To improve the blur rendering,
we randomly rotate the sampling kernel per pixel
instead of increasing the number of samples (and
thus decreasing performance).

In the case of soft-edged shadow mapping, Yuri
Uralsky proposed generating blur by using a set of
different sampling kernels stored in a 3D texture.5
In our case, instead of having many different ker-
nels, we propose to always use the same kernel and
to randomly rotate it for each pixel. As a result of
this rotation, we replace the ghosting artifact with
a high-frequency noise (see Figure 2), a visual cue
that human eyes filter out efficiently.5 In this way,
the blur computation becomes also faster and uses
less memory.

For each pixel, we just need information about
the 2D rotation of angle α (see the algorithm in
Figure 3). To construct a 2D rotation matrix, we
use cos(α) and sin(α) values, which we precompute
and store in a single low-resolution 2D texture
repeated on the whole screen. Finally, we simply
multiply each sample offset defined in the frag-
ment program by this matrix. This method saves a
lot of texture memory bandwidth because we need
to read only one texel per pixel. Earlier methods
required several readings in the 3D texture.5

Figure 2.
Canceling
ghosting
artifacts.
On the left,
the blur
computation
has generated
a ghosting
artifact. On
the right,
the ghosting
artifact is
replaced by
high-frequency
noise using per-
pixel random
rotation of
the sampling
kernel. (Quake
III Arena
screenshot,
courtesy of
IdSoftware)

	 IEEE Computer Graphics and Applications� 51

Finally, we eliminate the color-leaking artifact
by simple depth comparisons.4 Figure 4 (next page)
shows results from our successful implementation
of the final blur algorithm in the open source en-
gine of the Quake III Arena video game (www.id-
software.com).

Implementation
Figure 5 (next page) shows the final software ar-
chitecture for computing visual blur effects. From
the graphic hardware, we get three raw compo-
nents: the semantic weights, the depths, and the
sharp image. Then, the autofocus algorithm uses
the semantic weights, the depths, and the com-
puted spatial weights as input to determine a fo-
cal distance. A low-pass filter then filters the focal
distance (accommodation phenomenon). The DoF
blur algorithm uses the lens model to compute
the amount of DoF blur according to the filtered
focal distance and the depths. At the same time,
the peripheral blur algorithm first computes the
distances between each pixel and the autofocus
zone’s center. Then it computes the amount of pe-
ripheral blur using Equation 5. The total amount
of blur is computed using the amount of both the
DoF and peripheral blurs. Finally, our algorithm
computes the blurred image by applying the total
amount of blur to the sharp image.

For application purposes, we implemented our
blur effects in Quake III Arena’s real-time 3D en-
gine. Our code is open and available at www.irisa.
fr/bunraku/eye. We used a desktop PC with a 2.8
GHz Intel PentiumD CPU, 1.0 Gbytes of RAM,
and an ATI 1900 Series card with 512 Mbytes of
video memory.

Table 1 (next page) shows the performance (frame
rate) of our video game application under different
conditions: with and without the blur effect, and with
and without accelerated GPU computation for several
screen resolutions and two autofocus zone ratios.

Focus-Point Measurement and Analysis
We conducted a preliminary experiment to mea-
sure the focus point of participants during first-
person navigation in a VE. Each of six participants
faced various first-person navigation situations.
The experiment’s main objective was to analyze
the distance between the user’s focus point and
the screen’s center so that we could better set the
autofocus zone’s size.

Procedure
We recorded the focus point of six males with a
mean age of 24.2 (standard deviation = 2.8) dur-
ing several FPS game sessions using an eye-track-

ing system. All participants were healthy and had
normal or corrected vision. We used the ASL 6000
eye-tracker system with head-mounted optics and
a chin rest to maintain the participants’ heads at
the same position. We used a 5:4 monitor with a
resolution of 1,280 × 1,024, positioned 50 cm in
front of the participant.

The experiment consisted of playing Quake III
Arena on the game’s Q3DM7 map with no blur

input : Texture texSharp contains the sharp image

input : Texture texCoCD contains pixels depth and circle of confusion size

input : Texture texRot contains per pixel rotation parameters

input : Current texel coordinates texCoord

input : Current texel coordinates texCoordRot of the rotation texture

input : Samples offsets samplesOffsets [12]

input : Maximum circle of confusion diameter cocMaxD

input : Pixel final color Out

texRd (t,c) : read the texture t at the coordinate c

//initialization

float pixelCoc = texRd (texCoCD, texCoord).r;

float pixelDepth = texRd (texCoCD, texCoord).g;

vec3 colorSum = texRd (texSharp, texCoord);

float cocSize = cocMaxD × pixelCoc;

float totalContrib = 1.0;

//creation of the rotation matrix from cos(a) and sin(a)

rMat = createRMat (texRd (texRot, texCoordRot));

for i=0 to 12 do

	 //rotation of the current offset

	 vec2 offset = samplesOffsets [i] · rMat;

	 //texture coordinates of the current sample

	 vec2 splCoord = texCoord + cocSize × offset;

	 //sampling

	 vec3 splColor = texRd (texSharp, splCoord);

	 float splCoc = texRd (texCoCD, splCoord).r;

	 float splDepth = texRd (texCoCD, splCoord).g;

	 //avoid color leaking artifact using depth comparison

	 float sampleContrib = splCoc;

	 if (splDepth > pixelDepth) then

	 sampleContrib = 1.0;

	 end

	 //sum of all contributions

	 colorSum += splCoc × sampleContrib;

	 totalContrib += sampleContrib;

end

//output final color

Out = colorSum ÷ totalContrib;

Figure 3. Pseudocode of the fragment program that computes peripheral
and DoF blur. The algorithm randomly rotates the blur sampling kernel
per pixel using a precomputed texture to store rotation information.

52	 November/December 2008

VR Software and Technology

effects. Four successive sessions recorded four dif-
ferent conditions:

Navigation. Each participant navigates freely and
alone in the map (no enemies) for 3 minutes.

■

1Enemy. Each participant fights against one en-
emy for 5 minutes.
4Enemies. Each participant fights against four
enemies for 5 minutes.
4EnemiesBonus. Each participant fights against
four enemies for 5 minutes and can pick up a
life bonus.

At each frame, and during each session, we re-
corded the 2D position of the participant’s focus
point on screen and whether he or she shoots (a
Boolean value).

Focus-Point Experimental Results
Figure 6 illustrates the percentage of time spent
looking inside a rectangular zone centered on the
screen as a function of the zone’s size—that is, the
zone/screen-size ratio. The zone/screen-size ratio
corresponds to the ratio between the focus zone’s
height and the height of the full image on the
screen. This ratio is equal to 1 if the zone covers
the entire image and 0 if the zone is equal to one
pixel. The ratio is 0.5 if the focus zone’s area cor-
responds to one-quarter of the image’s area.

As expected, all participants looked close to the
screen’s center (the mean curve). When firing (the
mean-shooting curve), the participant’s focus point
naturally comes even closer to the FPS’s central vi-
sor. As a result, when the task involves more ene-
mies and thus more shooting (the 4Enemies curve),
the participants are looking much closer to the cen-
ter. In other words, the more enemies on the map,
the more participants focus on the screen’s center.
For the 1Enemy session, participants probably alter-
nated between navigation and fighting, so the 1En-
emy curve is logically a mix between the Navigation
curve and the 4Enemies curve.

On average, when the zone-screen ratio is 0.5
(that is, the zone’s height corresponds to half the
screen), the participants look inside the zone 93
percent of the time. This result is consistent with
previous findings of Kenny and his colleagues,
who obtained a score of 82 percent.6 The differ-
ence could be the result of more visual informa-
tion displayed at the periphery of the screen during
Kenny’s experiment.

Developers can use the curves in Figure 6 to set
the autofocus zone’s size. For instance, to ensure
that the autofocus zone will capture 75 percent
of the user’s gaze when fighting against four FPS
enemies, the zone-screen ratio must be 0.25. This
translates to a rectangle of 320 × 256 pixels.

Blur-Effects Evaluation
We conducted a second experiment to study how

■

■

■

Figure 4. A Quake III Arena frame with blur effects. The frame shows
the final effect of the algorithm implementation. (Quake III Arena
screenshot, courtesy of IdSoftware)

Camera

Graphic card

Depth

Diameter

Lens model

Size of zone Cut-off frequency

Autofocus zone Low-pass filter

Computation
of blur
on GPU

Autofocus

Peripheral blur
amount

Final blur
amount

Final image

DCoCper

fd

fd

DCoCfin

DCoCdof

Maximum
CoC size

Per-pixel blur amount

Semantic weight

Virtual environment

Sharp image

Figure 5. The software architecture for the blur effects system. The system
computes the final image’s blur from a camera image in a virtual environment.

Table 1. Frame rate of video game application with and without blur
effects for various configurations.

Frame rate (Hz)

With blur

Zone ratio: 0.25 Zone ratio: 0.5

Frame resolution (pixels) Without blur CPU GPU CPU GPU

800 × 600 313 80.0 97.5 55.3 91.5

1,024 × 768 308 65.2 81.7 50.1 78.8

1,280 × 1,024 305 48.8 62.2 35.5 61.3

	 IEEE Computer Graphics and Applications� 53

our visual blur affects the performance and subjec-
tive preference of FPS gamers. The DoF blur might
annoy gamers because it blurs the displayed image
to some extent. Alternatively, the effect might make
the VE look more realistic, thus increasing users’
feelings of immersion and, as a result, their enjoy-
ment of the navigation and game experience.

Experimental Apparatus
We implemented peripheral and DoF blurs with au-
tomatic focal-distance computation and accommo-
dation simulation in Quake III Arena’s 3D engine.
We activated both the semantic and spatial weights,
setting the enemies’ semantic weights to remain
constant at WSmax and all other semantic weights
to remain constant at WSmin. (The other numerical
values we used appear in earlier sections.)

We used the Q3DM7 Quake III Arena map but
removed all life packs, special bonuses, and weap-
ons. We connected six PCs on a local network with
identical graphic cards, monitors, and resolutions.
There was no perceivable lag. All participants had
an infrared mouse and a stereo headset for audio
feedback. For the experiment’s purpose, the video
cards’ wait-for-vertical-synchronization feature
remained constant at 60 frames per second.

We set the zone-screen ratio at 0.25—that is, the
focus zone’s area covered one-eighth of the full
image. On the basis of the previous experiment’s
results (the 4Enemies curve in Figure 6), this value
ensured that participants look at least 75 percent
of the time in the autofocus zone.

Procedure
The task consisted of playing an FPS game in
death-match mode (each player fights against all
the other players). We instructed participants to
be as precise as possible when shooting while us-
ing as little ammunition as possible. To reduce the
variability across subjects, all players had only one
weapon (a submachine gun) with unlimited am-
munition. We increased the amount of life to 200
points (from the usual 100 points) to make the
fights last longer.

Participants included 28 males and two females
with a mean age of 24.0 (standard deviation =
2.2). Of the 30 participants, 30 percent assessed
themselves as expert gamers, 37 percent as inter-
mediate, and 33 percent as beginners.

We used a repeated-measures-within-subjects
design. The independent variable was the visual ef-
fect (Veffect) with two levels: no blur effect and
blur effects. The experiment lasted 1 hour includ-
ing breaks. We divided participants randomly into
five groups of six subjects each. Then we divided

the experiment into two parts. For each part of
the experiment, we counterbalanced the presenta-
tion order among the participants and between the
groups.

The first part consisted of a 4-minute training
session with or without blur, followed by the real
experiment with a first session of 5 minutes in the
same conditions as the training session and a sec-
ond 5-minute session with the reverse condition.
Participants filled out a subjective questionnaire
after these two sessions.

The second part consisted of a performance test
including six sessions of 5 minutes each. For each
session, three participants played with blur and the
other three played without blur. The blur condition
was automatically swapped for all players when run-
ning a new session. At the end, participants filled out
a general-appreciation questionnaire and a personal
form to indicate their preferences and skill level.

Blur-Effects Experimental Results
Table 2 displays participants’ performance with
and without the blur effects. The dependent vari-
ables were the number of enemies that the player
killed (Frags), the number of times the player was
killed (Deaths), the number of the player’s shots
(Total Shots), and the player’s precision (Preci-
sion). Precision is a percentage value computed as
the ratio of the number of successful shots to the
total number of shots.

Performance. Repeated-measures analysis of variance
(Anova) showed that the presentation order of the
visual blur effects and groups had no significant ef-
fect on or interaction with the dependent variables,
indicating that a within-subjects design was appro-
priate. Repeated-measures Anova found a signifi-
cant main effect for Veffect on Frags (F1,29 = 8.1, p =
0.008), Deaths (F1,29 = 5.7, p = 0.023), and Precision
(F1,29 = 17.3, p < 0.0001). These results show that

0

10

20

30

40

50

60

70

80

90

100

0 0.25 0.5 0.75 1
Size of the autofocus zone (zone/screen size ratio)

Pe
rc

en
ta

ge
 o

f t
im

e
sp

en
t

in
 t

he
 a

ut
of

oc
us

 z
on

e

Navigation
1Enemy
4Enemies
4EnemiesBonus
Mean
MeanShooting

Figure 6. First-
person shooter
sessions. The
curves show
the percentage
of time spent
looking inside a
centered zone
as a function of
the zone’s size
for four game
situations.

54	 November/December 2008

VR Software and Technology

Precision decreases significantly from 27.1 to 25.2
percent with blur effects while Frags decreases from
15.4 to 14 and Deaths increases from 14.4 to 15.2.

Interestingly, when we treated the game-experience
level reported by each participant as a between-subject
factor and the Veffect as a within-subject factor,
Anova showed a significant interaction between the
experience level and Veffect (F2,27 = 4.02, p = 0.03)
on Precision. This shows that Precision decreases for
expert gamers when visual effects are enabled (from
31.2 to 28.7 percent) and for intermediate gamers
(from 26.1 to 23.3 percent), whereas the precision
for beginners remains around 24 percent.

Questionnaire and user feedback. After the two first
sessions (with and without blur effects), 21 of the
participants noticed a difference between the ses-
sions, and 20 of them could explain that a blur ef-
fect had been applied to the rendering. The final
general-appreciation questionnaire showed no sig-
nificant trend concerning a potential appreciation
or dislike of the blur effects. Indeed, participant
opinions were balanced concerning increased real-
ism (11 preferred playing with the blur, 13 preferred
playing without it, and six had no preference),
gameplay fun (9 with, 10 without, 11 no prefer-
ence), perception of depth and distances in the VE
(10 with, 14 without, 6 no preference), and feeling
of presence (11 with, 10 without, 9 no preference).

The participants who preferred the game with
blur effects could be very enthusiastic: “an im-
provement in realism, especially during volte-
face,” “without blur, I felt more visible, I had to
hide more,” “funny,” “it focuses my attention,”
“surprising, striking,” “much more realistic,” “I
have a better precision,” and “higher immersion.”
Many participants thus seemed ready to activate
the blur effects for gameplay.

The participants who preferred the game without
the blur effects generally found the blur disturbing
and tiring (producing a headache, for example).
Five participants said they thought the blurring
effect caused their fatigue. Some participants, es-
pecially some expert gamers, described the blur as
a “discomfort.” Some participants perceived it as
“too strong.” Furthermore, the blur annoyed these

people when they were exploring the image and
looking for targets on the screen.

Most participants (83 percent, 25/30) said the
use of blur didn’t modify their gaming strategy.

Discussion. Before the experiment, we had formu-
lated two hypotheses:

Visual blur degrades participants’ performance
because it blurs the displayed image to some
extent.
Visual blur improves the participants’ subjec-
tive preference because it provides an addi-
tional visual effect that potentially increases
the scene’s realism or gameplay fun.

Our results corroborate Hypothesis 1. Players were
indeed less accurate during shooting. Frags de-
creased by about 7 percent. The number of deaths
increased slightly, but this difference is less rel-
evant because it was less than one Frag.

The increase in Deaths with blur effects, to-
gether with the decrease in Frags and lower pre-
cision, could indicate that blur effects make the
game harder. However, this result is significant
only for more expert gamers who are used to play-
ing the game with low visual quality and all special
effects disabled. These players have invested a lot
of strategy and tactics in the original game, and
any change reduces that investment’s advantage.
This stresses the importance of considering both
learning and resistance to change when designing
visual rendering and gameplay for video games.

Regarding Hypothesis 2, half the players who
gave an opinion preferred the presence of blur
in terms of fun, presence, and VE realism. The
same number of participants disliked the effects.
Although these results only partially support Hy-
pothesis 2, they seem sufficient for recommending
blur effects in some game design cases.

Several participants’ comments suggested that
they didn’t constantly look inside the focus area at
the screen’s center. This suggests at least two game-
play phases. In one phase, the player uses his or her
visor when shooting at enemies. In this case, our
model’s computation of focal distance was always
well adapted to the user’s gaze. In the other phase,
the player explores the image to locate enemies.
During this phase, the computed focal distance
might not correspond to the users’ actual attention.
For some of them, this situation generated both
discomfort and fatigue. An autofocus zone with a
zone-screen ratio of 0.25 receives 75 percent of a
user’s gaze (see Figure 6). This seems sufficient for
many players who liked the blur effect but not for

1.

2.

Table 2. Mean and standard deviation (SD) for each dependent variable
of the performance test, with and without the blur effects.

No blur effect With blur effect

Mean SD Mean SD

Frags 15.4 6.6 14 6.6

Deaths 14.4 3.6 15.2 3.4

Total Shots 1,011.9 271.4 983.4 262.4

Precision (%) 27.1 6.4 25.2 6.2

	 IEEE Computer Graphics and Applications� 55

others. The appreciation seems to depend strongly
on players’ gaming strategy.

Because some participants complained that the blur
was too strong, even attributing fatigue to it, develop-
ers must carefully tune the blur intensity. Applications
might also let users change the amount of blur.

To our knowledge, developers for the new gen-
eration of games simply compute the focal dis-

tance using the depth of the pixel located at the
screen’s center. This straightforward technique will
likely increase users’ discomfort and degrade their
subjective preferences. We encourage developers to
compute the blur effect the way we propose it and
give users the options to adjust the blur strength
and to enable or disable the blur effect.

This study focused on FPS video games, which
provide a challenging scenario for testing our blur
effects. However, visual blur effects could also be
valuable in other applications and contexts. For
example, a game designer could use them to fo-
cus or distract the player. In applications such as
architectural design and project reviews, the DoF
blur could be used to improve the perception of
depths and distances in the virtual world. Indeed,
it could be more adapted to navigations in which
the user is less stressed and less forced to explore
the entire image to find enemies. Further work is
now necessary to investigate the future applica-
tions and uses of visual blur effects.

Future work might also involve evaluating how
the DoF blur effect influences cybersickness and
depth perception in the VE. Finally, it would be in-
teresting to further evaluate this effect when com-
puted with an accurate eye-tracking system.3�

Acknowledgments
We thank the anonymous reviewers for their com-
ments. We also thank all the participants in our ex-
periments for their kindness and patience. The French
National Agency of Research supported this research
through the grant ANR05 RNTL01715.

References
	 1.	 D. Atchinson and G. Smith, Optics of the Human Eye,

Elsevier, 2000.
	 2.	 M. Potmesil and I. Chakravarty, “A Lens and Aperture

Camera Model for Synthetic Image Generation,”
Proc. Siggraph, ACM Press, 1981, pp. 298–306.

	 3.	 S. Hillaire et al., “Using an Eye-Tracking System to
Improve Camera Motions and Depth-of-Field Blur
Effects in Virtual Environments,” Proc. IEEE Virtual

Reality Conf. (VR 08), IEEE Press, 2008, pp. 47–50.
	 4.	 G. Riguer, N. Tatarchuk, and J. Isidoro, “Real-

Time Depth of Field Simulation,” ShaderX2: Shader
Programming Tips and Tricks with DirectX 9, Wolfgang
Engel, ed., Wordware, 2003, pp. 529–556.

	 5.	 Y. Uralsky, “Efficient Soft-Edged Shadows Using
Pixel Shader Branching,” GPU Gems 2: Programming
Techniques for High-Performance Graphics and General-
Purpose Computation, M. Pharr, ed., Addison-Wesley,
2005, pp. 269–282.

	 6.	 A. Kenny et al., “A Preliminary Investigation into
Eye Gaze Data in a First Person Shooter Game,”
Proc. European Conf. Modelling and Simulation, ECMS,
2005, pp. 146–152.

Sébastien Hillaire is a PhD student in computer
science in the Bunraku research team at the French
National Research Institute for Computer Science
and Control (INRIA) and France Télécom R&D. His
research interests include VR, 3D interaction, and
computer graphics using graphics hardware and vi-
sual-attention models. Hillaire received his master’s
in computer science from the University of Rennes 1.
Contact him at sebastien.hillaire@irisa.fr.

Anatole Lécuyer is a senior researcher in the Bun-
raku research team at the French National Research
Institute for Computer Science and Control (INRIA)
and Collège de France’s Laboratory of Physiology of Per-
ception and Action. His research interests include VR,
3D interaction, haptic interaction, and brain-computer
interfaces. Lécuyer received his PhD in computer sci-
ence from the University of Paris XI. He’s an associate
editor of ACM Transactions on Applied Perception.
Contact him at anatole.lecuyer@irisa.fr.

Rémi Cozot is an assistant professor at the University
of Rennes 1 and a member of the Bunraku research team
at the French National Research Institute for Computer
Science and Control (INRIA). His research interests in-
clude enhancement of real-time rendering using human
vision features and color appearance models. Cozot re-
ceived his PhD in computer science from the University
of Rennes 1. Contact him at remi.cozot@irisa.fr.

Géry Casiez is an assistant professor in the University
of Lille 1’s computer science department and a mem-
ber of the Alcove research team at the French National
Research Institute for Computer Science and Control
(INRIA). His research interests include 2D and 3D in-
teraction, haptic interaction, and the empirical evalua-
tion of user interfaces, including associated metrics and
predictive models of human performance. Casiez received
his PhD in computer science from the University of Lille
1. Contact him at gery.casiez@lifl.fr.

