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In human vision, the depth of field (DoF) is the 
range of distances near the focus point where 
the eyes perceive the image as sharp. Objects 

behind and in front of the focus point are blurred. 
DoF and its associated blur effects are well-known 
classic depth cues in human vision.1 Virtual im-
ages that lack a DoF blur can sometimes look “too 
perfect” and therefore synthetic. System designers 
therefore added DoF blur effects early to computer 
graphics pipelines.2 Movies also use the classic blur 
effects of focal-distance changes to convey sensa-
tions or otherwise capture viewers’ attention.

Real-time VR applications haven’t yet introduced 
visual blur effects. We now have the programming 
capabilities and the processing power to compute 
them in real time. However, we don’t know how 
such effects will influence user performance and 
subjective experience. We therefore need to

develop new models of realistic visual blur ef-
fects for virtual environments (VE), taking 
interactivity and real-time constraints into ac-
count, and
evaluate visual blur effects in terms of both VE 
user performance and subjective preferences.

Here, we describe a novel model of dynamic vi-
sual blur for first-person VE navigation. We also 
report results from an experiment to study how 

■

■

the blur effect influenced gamers’ performance 
during a multiplayer first-person-shooter (FPS) 
session.

Visual Blur Effects for  
First-Person VE Navigation
We use a model for dynamic visual 
blur that combines DoF and pe-
ripheral blur effects. For landmark 
research and state-of-the-art im-
plementations relative to these 
topics, see the sidebar, “Develop-
ment and Related Work in Visual 
Blur Effects” (next page).

The DoF Blur Effect
This effect simulates visual blurring 
by blurring the pixels of objects in 
front of or behind the focus point. 
The focus point is associated with 
a focal distance (fd)—the distance 
between the eyes (or camera) and 
the focus point.

The lens model. We use the classic lens model intro-
duced by Michael Potmesil and Indranil Chakra-
varty.2 In this model, the amount of blur—that is, 
the diameter of the circle of confusion (DCoCdep) 
of a point projected on screen—is

Depth-of-field blur effects 
are well-known depth cues 
in human vision. Computer 
graphics pipelines added 
DOF effects early to enhance 
imagery realism, but real-
time VR applications haven’t 
yet introduced visual blur 
effects. The authors describe 
new techniques to improve 
blur rendering and report 
experimental results from 
a prototype video game 
implementation.
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where D is the lens diameter, f is the lens focal length, 
fd is the focal distance, and z is the point depth.

The autofocus zone. Eye-tracking systems offer an 

optimal way to determine the focal distance in 
real time.3 However, such devices are expensive, 
complex, and unavailable for a mass market. In 
the absence of such a system, we chose a para-
digm used in FPS games, where users employ a 2D 
mouse and keyboard to manipulate a virtual visor 
always located at the screen’s center. In this ap-
proach, we can assume the user looks mainly at 

Computer graphics researchers introduced visual blur 
simulation early to improve the photorealistic as-

pect of synthetic images. Michael Potmesil and Indranil 
Chakravarty first proposed simulating an optical lens 
to simulate depth-of-field (DoF) blur. Their algorithm 
uses the original sharp image, each pixel’s depth, and a 
postprocessing step to compute the blur. The lens simula-
tion provides the amount of each pixel’s blur according 
to its depth. With lens simulation, an out-of-focus point 
becomes a disk or circle after the projection through the 
lens. The diameter of the resulting circle of confusion 
(CoC) corresponds to the amount of blur.1

After Potmesil and Chakravarty’s pioneering study, most 
researchers used this lens model to compute the DoF blur.2 
However, Brian Barsky introduced the alternative concept 
of vision-realistic rendering, which uses all of an individual’s 
optical-system characteristics.3 This let Barsky accurately 
simulate the foveal image scanned from wavefront data of 
human subjects as measured by an aberrometry device.

The main problem of DoF blur algorithms is color leaking 
across depth discontinuities. This artifact blurs edges of 
in-focus objects that are in front of a blurred background. 
DoF algorithms compute the blur itself and avoid color 
leaking in different ways. In a survey of DoF algorithms, 
Joe Demers divides the different techniques into three 
main categories: scattering, gathering, and diffusion.2 
Gathering techniques (also called reverse-mapping tech-
niques) use only the sharp image’s pixels. For each of the 
final image’s pixels, the algorithm gathers and blends 
source-image pixel colors that belong to the current 
pixel’s CoC. Simple depth tests during the gathering step 
avoid color-leaking artifacts. This approach is easily imple-
mented on current graphics hardware.4

Other blur effects can further enhance digital images’ 
appearance. For instance, peripheral blur refers to the eye’s 
coarser acuity from the fovea to the periphery.5 Nelson 
Max and Douglass Lerner define a motion blur that simu-
lates the images obtained from a digital camera.6 This blur 
corresponds to the recording of objects that move rapidly. 
Indeed, integrating such images while the shutter is open 
generates a blur.

Julian Brooker and Paul Sharkey investigated the DoF 
blur effect using a stereoscopic display and an eye-track-
ing system to find a path in a 3D labyrinth.7 However, 

their results show no evidence of performance improve-
ment. They concluded that their application’s very slow 
frame rate might have been the cause and suggested 
implementing and further evaluating real-time DoF blur 
effects in virtual environments.

Przemyslaw Rokita first suggested using visual blur 
effects in VR.8 In the latest generation of video games, 
Epic Games’ Unreal Engine 3 (www.epicgames.com) and 
Crytek’s CryEngine 2 (www.crytek.com) propose tem-
porary DoF blur together with motion blur. Techland’s 
Chrome Engine (www.development.techland.pl) also 
introduces a dynamic DoF blur effect, but it remains lim-
ited to a “sniper mode” with only a few depth plans. All of 
these DoF blur effects suffer from leaking artifacts.
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the part of the screen close to the visor. In fact, 
using an eye-tracking system, Alan Kenny and his 
colleagues found that more than 82 percent of the 
time, FPS video gamers indeed watched a central 
area corresponding to half the monitor’s size.

We therefore introduce a notion called the au-
tofocus zone—an area at a screen’s center that the 
user is supposed to look at preferentially. This re-
calls digital-camera autofocus systems, which also 
aim to determine an appropriate focal distance 
when taking a picture. We can compute the depth 
of autofocus-zone pixels by using an auxiliary buf-
fer. As in digital cameras, the function to compute 
the focal distance from the depths of all pixels 
in the autofocus zone could be minimum, maxi-
mum, or average. In FPS games, some objects in 
the environment are more important—for exam-
ple, enemies or bonus objects. We therefore use a 
semantic weighting of pixel depths. The semantic 
weighting increases the pixel weights correspond-
ing to objects (or targets) known to be important 
in the scene. We do so by adding a field to the 
initial virtual-object description that corresponds 
to the object’s visual semantic weight. Each pixel’s 
semantic weight ranges from WSmin to WSmax.

Figure 1 illustrates the use of semantic weight-
ing. In this example, the weight of the character in 
front is much higher than that of the background. 
Even if the character covers fewer pixels than the 
background (less than one-quarter of the area), 
the focus is systematically on the front charac-
ter. In the work we describe here, the semantic 
weights remain constant. However, other applica-
tions could use dynamic weighting. For instance, 
we could simulate the habituation phenomenon 
by progressively decreasing each object’s semantic 
value on the basis of how long the object remains 
on the screen.

In addition, we introduce a spatial weighting 
that slightly modifies the central pixels’ weight. 
We use a Gaussian function that gives a weight 
of WGmax to the center and WGmin to the zone’s 
borders. Finally, we compute the resulting focal 
distance fd:
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where WS(p) is the semantic weight of pixel p, 
WG(x) is the Gaussian spatial weight for distance 
x, and d2AC(p) is the distance of p from the auto-
focus zone’s center.

When we implemented the final blur model to 
study its influence on gamers’ performance, we set 
WGmin to 0.7, WGmax to 1, WSmin to 0.004, and 
WSmax to 1.

GPU computation of focal distance. Computing Equa-
tion 2 on a CPU takes a long time, especially for 
a large autofocus zone. We therefore compute the 
focal distance using a general-purpose technique 
on a GPU (GPGPU).

To evaluate fd using Equation 2, we must calcu-
late computationally expensive sums, which can 
produce number overflow. So we replace the sum 
operation by the mean operation using equation 3: 
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First, we store the values of WD(p) and W(p) in 
a 2D texture that’s the size of the autofocus zone. 
Then, we compute this texture’s mean by recur-
sively downsampling the texture by a factor of two 
until we reach the size of one texel, which finally 
contains the means WD p( ) and W p( ). In this al-
gorithm, at each step and for each pixel, a frag-
ment program computes the mean of the texture’s 
four corresponding texels computed at the preced-
ing step. Using this technique, we can finally ac-
celerate the focal distance fd computation using a 
GPU instead of a CPU.

Simulation of accommodation. Human eyes take a 
few milliseconds to accommodate a change in 
focus point. We simulate this accommodation 
phenomenon in our DoF blur effect by adding a 
temporal filter to the final focal-distance compu-
tation. After preliminary testing, we chose a low-
pass filtering:
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where τ equals (π × fc)/2, fc is the cut-off frequency 
in Hertz, Te is the sampling period in seconds, fd(n) 
is the filtered focal distance at frame n, and fd(n) 

Figure 1. 
The depth-
of-field blur 
when using a 
rectangular 
autofocus zone 
(the white 
rectangle): 
(a) Without 
semantic 
weighting, the 
focus is on the 
background. 
(b) With 
semantic 
weighting, 
the focus is 
automatically 
set on the 
important 
character. 
(Quake 
III Arena 
screenshot, 
courtesy of 
IdSoftware)

(a)	 (b)
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is the focal distance given by the autofocus system 
(before filtering).

In our final implementation, we used Te = 1/70 s  
and fc = 5 Hz.

The Peripheral Blur Effect
We simulate the peripheral blur by decreasing an 
image’s sharpness, when it’s at the image scene’s 
periphery. The effect progressively blurs the pixels 
located at a certain distance from the focus area’s 
center.

The peripheral blur is independent of the DoF 
blur. We added it as a supplementary visual ef-
fect, expecting that it might enhance the user’s 
sensory experience. However, we also expected it 
to encourage users to look at the screen’s center. 
Indeed, by slightly blurring an image’s contour, we 
hoped to force the user to look through the visor—
that is, inside the focus area. Equation 5 computes 
the amount of peripheral blur for each pixel:

DCoC
n

per = − 11
z p×






 � (5)

where z is the look-at direction (for example, the 
camera’s direction when the focus area is at the 
image’s center) and p is the normalized direction 
of the pixel in the camera frame.

In our final implementation, we used a power 
n equal to 2.

The Final Blurred Image
After we compute both the peripheral and DoF blur 
amount, we can compute the final blurred image.

Computing the final blur amount. The total amount 
of blur for each pixel corresponds to the final diam-
eter of its circle of confusion (DCoCfin). Equation 
6 shows the contributions of both the peripheral 
and DoF blurs:

DCoCfin = Dmax × min(1, DCoCdep + DCoCper)� (6)

where Dmax is the maximum amount of blur (the 
maximum diameter of the pixel’s final CoC), 
DCoCdep is the normalized diameter of the DoF 
blur’s CoC, and DCoCper is the normalized diam-
eter of the peripheral blur’s CoC. In our imple-
mentation, we set Dmax to 11 pixels.

Rotating the blur sampling kernel. Our blur algo-
rithm is based on a gathering blur technique.4 This 
technique mixes the colors of 12 samples, which 
form the sampling kernel. To compute the blur, the 
color samples come from inside the CoC according 
to a Poisson-disk distribution. In this case, ghost-
ing artifacts appear—that is, objects seem to dupli-
cate (see Figure 2). To improve the blur rendering, 
we randomly rotate the sampling kernel per pixel 
instead of increasing the number of samples (and 
thus decreasing performance).

In the case of soft-edged shadow mapping, Yuri 
Uralsky proposed generating blur by using a set of 
different sampling kernels stored in a 3D texture.5 
In our case, instead of having many different ker-
nels, we propose to always use the same kernel and 
to randomly rotate it for each pixel. As a result of 
this rotation, we replace the ghosting artifact with 
a high-frequency noise (see Figure 2), a visual cue 
that human eyes filter out efficiently.5 In this way, 
the blur computation becomes also faster and uses 
less memory.

For each pixel, we just need information about 
the 2D rotation of angle α (see the algorithm in 
Figure 3). To construct a 2D rotation matrix, we 
use cos(α) and sin(α) values, which we precompute 
and store in a single low-resolution 2D texture 
repeated on the whole screen. Finally, we simply 
multiply each sample offset defined in the frag-
ment program by this matrix. This method saves a 
lot of texture memory bandwidth because we need 
to read only one texel per pixel. Earlier methods 
required several readings in the 3D texture.5

Figure 2. 
Canceling 
ghosting 
artifacts. 
On the left, 
the blur 
computation 
has generated 
a ghosting 
artifact. On 
the right, 
the ghosting 
artifact is 
replaced by 
high-frequency 
noise using per-
pixel random 
rotation of 
the sampling 
kernel. (Quake 
III Arena 
screenshot, 
courtesy of 
IdSoftware)
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Finally, we eliminate the color-leaking artifact 
by simple depth comparisons.4 Figure 4 (next page) 
shows results from our successful implementation 
of the final blur algorithm in the open source en-
gine of the Quake III Arena video game (www.id-
software.com).

Implementation
Figure 5 (next page) shows the final software ar-
chitecture for computing visual blur effects. From 
the graphic hardware, we get three raw compo-
nents: the semantic weights, the depths, and the 
sharp image. Then, the autofocus algorithm uses 
the semantic weights, the depths, and the com-
puted spatial weights as input to determine a fo-
cal distance. A low-pass filter then filters the focal 
distance (accommodation phenomenon). The DoF 
blur algorithm uses the lens model to compute 
the amount of DoF blur according to the filtered 
focal distance and the depths. At the same time, 
the peripheral blur algorithm first computes the 
distances between each pixel and the autofocus 
zone’s center. Then it computes the amount of pe-
ripheral blur using Equation 5. The total amount 
of blur is computed using the amount of both the 
DoF and peripheral blurs. Finally, our algorithm 
computes the blurred image by applying the total 
amount of blur to the sharp image.

For application purposes, we implemented our 
blur effects in Quake III Arena’s real-time 3D en-
gine. Our code is open and available at www.irisa.
fr/bunraku/eye. We used a desktop PC with a 2.8 
GHz Intel PentiumD CPU, 1.0 Gbytes of RAM, 
and an ATI 1900 Series card with 512 Mbytes of 
video memory.

Table 1 (next page) shows the performance (frame 
rate) of our video game application under different 
conditions: with and without the blur effect, and with 
and without accelerated GPU computation for several 
screen resolutions and two autofocus zone ratios.

Focus-Point Measurement and Analysis
We conducted a preliminary experiment to mea-
sure the focus point of participants during first-
person navigation in a VE. Each of six participants 
faced various first-person navigation situations. 
The experiment’s main objective was to analyze 
the distance between the user’s focus point and 
the screen’s center so that we could better set the 
autofocus zone’s size.

Procedure
We recorded the focus point of six males with a 
mean age of 24.2 (standard deviation = 2.8) dur-
ing several FPS game sessions using an eye-track-

ing system. All participants were healthy and had 
normal or corrected vision. We used the ASL 6000 
eye-tracker system with head-mounted optics and 
a chin rest to maintain the participants’ heads at 
the same position. We used a 5:4 monitor with a 
resolution of 1,280 × 1,024, positioned 50 cm in 
front of the participant.

The experiment consisted of playing Quake III 
Arena on the game’s Q3DM7 map with no blur 

input : Texture texSharp contains the sharp image

input : Texture texCoCD contains pixels depth and circle of confusion size

input : Texture texRot contains per pixel rotation parameters

input : Current texel coordinates texCoord

input : Current texel coordinates texCoordRot of the rotation texture

input : Samples offsets samplesOffsets [12]

input : Maximum circle of confusion diameter cocMaxD

input : Pixel final color Out

texRd (t,c) : read the texture t at the coordinate c 

//initialization

float pixelCoc = texRd (texCoCD, texCoord).r;

float pixelDepth = texRd (texCoCD, texCoord).g; 

vec3 colorSum = texRd (texSharp, texCoord);

float cocSize = cocMaxD × pixelCoc;

float totalContrib = 1.0;

//creation of the rotation matrix from cos(a) and sin(a) 

rMat = createRMat (texRd (texRot, texCoordRot));

for i=0 to 12 do

	 //rotation of the current offset

	 vec2 offset = samplesOffsets [i] · rMat;

	 //texture coordinates of the current sample

	 vec2 splCoord = texCoord + cocSize × offset;

	 //sampling

	 vec3 splColor = texRd (texSharp, splCoord);

	 float splCoc = texRd (texCoCD, splCoord).r;

	 float splDepth = texRd (texCoCD, splCoord).g;

	 //avoid color leaking artifact using depth comparison

	 float sampleContrib = splCoc;

	   if (splDepth > pixelDepth) then

	         sampleContrib = 1.0;

	 end

	 //sum of all contributions

	 colorSum += splCoc × sampleContrib;

	 totalContrib += sampleContrib;

end

//output final color

Out = colorSum ÷ totalContrib;

Figure 3. Pseudocode of the fragment program that computes peripheral 
and DoF blur. The algorithm randomly rotates the blur sampling kernel 
per pixel using a precomputed texture to store rotation information.
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effects. Four successive sessions recorded four dif-
ferent conditions:

Navigation. Each participant navigates freely and 
alone in the map (no enemies) for 3 minutes.

■

1Enemy. Each participant fights against one en-
emy for 5 minutes.
4Enemies. Each participant fights against four 
enemies for 5 minutes.
4EnemiesBonus. Each participant fights against 
four enemies for 5 minutes and can pick up a 
life bonus.

At each frame, and during each session, we re-
corded the 2D position of the participant’s focus 
point on screen and whether he or she shoots (a 
Boolean value).

Focus-Point Experimental Results
Figure 6 illustrates the percentage of time spent 
looking inside a rectangular zone centered on the 
screen as a function of the zone’s size—that is, the 
zone/screen-size ratio. The zone/screen-size ratio 
corresponds to the ratio between the focus zone’s 
height and the height of the full image on the 
screen. This ratio is equal to 1 if the zone covers 
the entire image and 0 if the zone is equal to one 
pixel. The ratio is 0.5 if the focus zone’s area cor-
responds to one-quarter of the image’s area.

As expected, all participants looked close to the 
screen’s center (the mean curve). When firing (the 
mean-shooting curve), the participant’s focus point 
naturally comes even closer to the FPS’s central vi-
sor. As a result, when the task involves more ene-
mies and thus more shooting (the 4Enemies curve), 
the participants are looking much closer to the cen-
ter. In other words, the more enemies on the map, 
the more participants focus on the screen’s center. 
For the 1Enemy session, participants probably alter-
nated between navigation and fighting, so the 1En-
emy curve is logically a mix between the Navigation 
curve and the 4Enemies curve.

On average, when the zone-screen ratio is 0.5 
(that is, the zone’s height corresponds to half the 
screen), the participants look inside the zone 93 
percent of the time. This result is consistent with 
previous findings of Kenny and his colleagues, 
who obtained a score of 82 percent.6 The differ-
ence could be the result of more visual informa-
tion displayed at the periphery of the screen during 
Kenny’s experiment.

Developers can use the curves in Figure 6 to set 
the autofocus zone’s size. For instance, to ensure 
that the autofocus zone will capture 75 percent 
of the user’s gaze when fighting against four FPS 
enemies, the zone-screen ratio must be 0.25. This 
translates to a rectangle of 320 × 256 pixels.

Blur-Effects Evaluation
We conducted a second experiment to study how 

■

■

■

Figure 4. A Quake III Arena frame with blur effects. The frame shows 
the final effect of the algorithm implementation. (Quake III Arena 
screenshot, courtesy of IdSoftware)
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Per-pixel blur amount

Semantic weight

Virtual environment

Sharp image

Figure 5. The software architecture for the blur effects system. The system 
computes the final image’s blur from a camera image in a virtual environment.

Table 1. Frame rate of video game application with and without blur 
effects for various configurations.

Frame rate (Hz)

With blur

Zone ratio: 0.25 Zone ratio: 0.5

Frame resolution (pixels) Without blur CPU GPU CPU GPU

800 × 600 313 80.0 97.5 55.3 91.5

1,024 × 768 308 65.2 81.7 50.1 78.8

1,280 × 1,024 305 48.8 62.2 35.5 61.3
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our visual blur affects the performance and subjec-
tive preference of FPS gamers. The DoF blur might 
annoy gamers because it blurs the displayed image 
to some extent. Alternatively, the effect might make 
the VE look more realistic, thus increasing users’ 
feelings of immersion and, as a result, their enjoy-
ment of the navigation and game experience.

Experimental Apparatus
We implemented peripheral and DoF blurs with au-
tomatic focal-distance computation and accommo-
dation simulation in Quake III Arena’s 3D engine. 
We activated both the semantic and spatial weights, 
setting the enemies’ semantic weights to remain 
constant at WSmax and all other semantic weights 
to remain constant at WSmin. (The other numerical 
values we used appear in earlier sections.)

We used the Q3DM7 Quake III Arena map but 
removed all life packs, special bonuses, and weap-
ons. We connected six PCs on a local network with 
identical graphic cards, monitors, and resolutions. 
There was no perceivable lag. All participants had 
an infrared mouse and a stereo headset for audio 
feedback. For the experiment’s purpose, the video 
cards’ wait-for-vertical-synchronization feature 
remained constant at 60 frames per second.

We set the zone-screen ratio at 0.25—that is, the 
focus zone’s area covered one-eighth of the full 
image. On the basis of the previous experiment’s 
results (the 4Enemies curve in Figure 6), this value 
ensured that participants look at least 75 percent 
of the time in the autofocus zone.

Procedure
The task consisted of playing an FPS game in 
death-match mode (each player fights against all 
the other players). We instructed participants to 
be as precise as possible when shooting while us-
ing as little ammunition as possible. To reduce the 
variability across subjects, all players had only one 
weapon (a submachine gun) with unlimited am-
munition. We increased the amount of life to 200 
points (from the usual 100 points) to make the 
fights last longer.

Participants included 28 males and two females 
with a mean age of 24.0 (standard deviation = 
2.2). Of the 30 participants, 30 percent assessed 
themselves as expert gamers, 37 percent as inter-
mediate, and 33 percent as beginners.

We used a repeated-measures-within-subjects 
design. The independent variable was the visual ef-
fect (Veffect) with two levels: no blur effect and 
blur effects. The experiment lasted 1 hour includ-
ing breaks. We divided participants randomly into 
five groups of six subjects each. Then we divided 

the experiment into two parts. For each part of 
the experiment, we counterbalanced the presenta-
tion order among the participants and between the 
groups.

The first part consisted of a 4-minute training 
session with or without blur, followed by the real 
experiment with a first session of 5 minutes in the 
same conditions as the training session and a sec-
ond 5-minute session with the reverse condition. 
Participants filled out a subjective questionnaire 
after these two sessions.

The second part consisted of a performance test 
including six sessions of 5 minutes each. For each 
session, three participants played with blur and the 
other three played without blur. The blur condition 
was automatically swapped for all players when run-
ning a new session. At the end, participants filled out 
a general-appreciation questionnaire and a personal 
form to indicate their preferences and skill level.

Blur-Effects Experimental Results
Table 2 displays participants’ performance with 
and without the blur effects. The dependent vari-
ables were the number of enemies that the player 
killed (Frags), the number of times the player was 
killed (Deaths), the number of the player’s shots 
(Total Shots), and the player’s precision (Preci-
sion). Precision is a percentage value computed as 
the ratio of the number of successful shots to the 
total number of shots.

Performance. Repeated-measures analysis of variance 
(Anova) showed that the presentation order of the 
visual blur effects and groups had no significant ef-
fect on or interaction with the dependent variables, 
indicating that a within-subjects design was appro-
priate. Repeated-measures Anova found a signifi-
cant main effect for Veffect on Frags (F1,29 = 8.1, p = 
0.008), Deaths (F1,29 = 5.7, p = 0.023), and Precision 
(F1,29 = 17.3, p < 0.0001). These results show that 
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Precision decreases significantly from 27.1 to 25.2 
percent with blur effects while Frags decreases from 
15.4 to 14 and Deaths increases from 14.4 to 15.2.

Interestingly, when we treated the game-experience 
level reported by each participant as a between-subject 
factor and the Veffect as a within-subject factor, 
Anova showed a significant interaction between the 
experience level and Veffect (F2,27 = 4.02, p = 0.03) 
on Precision. This shows that Precision decreases for 
expert gamers when visual effects are enabled (from 
31.2 to 28.7 percent) and for intermediate gamers 
(from 26.1 to 23.3 percent), whereas the precision 
for beginners remains around 24 percent.

Questionnaire and user feedback. After the two first 
sessions (with and without blur effects), 21 of the 
participants noticed a difference between the ses-
sions, and 20 of them could explain that a blur ef-
fect had been applied to the rendering. The final 
general-appreciation questionnaire showed no sig-
nificant trend concerning a potential appreciation 
or dislike of the blur effects. Indeed, participant 
opinions were balanced concerning increased real-
ism (11 preferred playing with the blur, 13 preferred 
playing without it, and six had no preference), 
gameplay fun (9 with, 10 without, 11 no prefer-
ence), perception of depth and distances in the VE 
(10 with, 14 without, 6 no preference), and feeling 
of presence (11 with, 10 without, 9 no preference).

The participants who preferred the game with 
blur effects could be very enthusiastic: “an im-
provement in realism, especially during volte-
face,” “without blur, I felt more visible, I had to 
hide more,” “funny,” “it focuses my attention,” 
“surprising, striking,” “much more realistic,” “I 
have a better precision,” and “higher immersion.” 
Many participants thus seemed ready to activate 
the blur effects for gameplay.

The participants who preferred the game without 
the blur effects generally found the blur disturbing 
and tiring (producing a headache, for example). 
Five participants said they thought the blurring 
effect caused their fatigue. Some participants, es-
pecially some expert gamers, described the blur as 
a “discomfort.” Some participants perceived it as 
“too strong.” Furthermore, the blur annoyed these 

people when they were exploring the image and 
looking for targets on the screen.

Most participants (83 percent, 25/30) said the 
use of blur didn’t modify their gaming strategy.

Discussion. Before the experiment, we had formu-
lated two hypotheses:

Visual blur degrades participants’ performance 
because it blurs the displayed image to some 
extent.
Visual blur improves the participants’ subjec-
tive preference because it provides an addi-
tional visual effect that potentially increases 
the scene’s realism or gameplay fun.

Our results corroborate Hypothesis 1. Players were 
indeed less accurate during shooting. Frags de-
creased by about 7 percent. The number of deaths 
increased slightly, but this difference is less rel-
evant because it was less than one Frag.

The increase in Deaths with blur effects, to-
gether with the decrease in Frags and lower pre-
cision, could indicate that blur effects make the 
game harder. However, this result is significant 
only for more expert gamers who are used to play-
ing the game with low visual quality and all special 
effects disabled. These players have invested a lot 
of strategy and tactics in the original game, and 
any change reduces that investment’s advantage. 
This stresses the importance of considering both 
learning and resistance to change when designing 
visual rendering and gameplay for video games.

Regarding Hypothesis 2, half the players who 
gave an opinion preferred the presence of blur 
in terms of fun, presence, and VE realism. The 
same number of participants disliked the effects. 
Although these results only partially support Hy-
pothesis 2, they seem sufficient for recommending 
blur effects in some game design cases.

Several participants’ comments suggested that 
they didn’t constantly look inside the focus area at 
the screen’s center. This suggests at least two game-
play phases. In one phase, the player uses his or her 
visor when shooting at enemies. In this case, our 
model’s computation of focal distance was always 
well adapted to the user’s gaze. In the other phase, 
the player explores the image to locate enemies. 
During this phase, the computed focal distance 
might not correspond to the users’ actual attention. 
For some of them, this situation generated both 
discomfort and fatigue. An autofocus zone with a 
zone-screen ratio of 0.25 receives 75 percent of a 
user’s gaze (see Figure 6). This seems sufficient for 
many players who liked the blur effect but not for 

1.

2.

Table 2. Mean and standard deviation (SD) for each dependent variable 
of the performance test, with and without the blur effects.

No blur effect With blur effect

Mean SD Mean SD

Frags 15.4 6.6 14 6.6

Deaths 14.4 3.6 15.2 3.4

Total Shots 1,011.9 271.4 983.4 262.4

Precision (%) 27.1 6.4 25.2 6.2
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others. The appreciation seems to depend strongly 
on players’ gaming strategy.

Because some participants complained that the blur 
was too strong, even attributing fatigue to it, develop-
ers must carefully tune the blur intensity. Applications 
might also let users change the amount of blur.

To our knowledge, developers for the new gen-
eration of games simply compute the focal dis-

tance using the depth of the pixel located at the 
screen’s center. This straightforward technique will 
likely increase users’ discomfort and degrade their 
subjective preferences. We encourage developers to 
compute the blur effect the way we propose it and 
give users the options to adjust the blur strength 
and to enable or disable the blur effect.

This study focused on FPS video games, which 
provide a challenging scenario for testing our blur 
effects. However, visual blur effects could also be 
valuable in other applications and contexts. For 
example, a game designer could use them to fo-
cus or distract the player. In applications such as 
architectural design and project reviews, the DoF 
blur could be used to improve the perception of 
depths and distances in the virtual world. Indeed, 
it could be more adapted to navigations in which 
the user is less stressed and less forced to explore 
the entire image to find enemies. Further work is 
now necessary to investigate the future applica-
tions and uses of visual blur effects. 

Future work might also involve evaluating how 
the DoF blur effect influences cybersickness and 
depth perception in the VE. Finally, it would be in-
teresting to further evaluate this effect when com-
puted with an accurate eye-tracking system.3�
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